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Dispersive chaos is a dynamical state that consists of the repeated, irregular growth and abrupt decay of
spatially localized bursts of traveling waves. This state can be observed just above onset in convection in
binary fluids at small, negative separation rafipin a long, quasi-one-dimensional geometry. We describe
experiments in which this erratic behavior is suppressed by applying as feedback a spatially varying Rayleigh-
number profile computed from the measured convection pattern. With the appropriate feedback algorithm, an
initial state consisting of unidirectional traveling waves of spatially uniform amplitude and wave number can
be maintained in a steady state over a large fraction of the unstable branch of the subcritical bifurcation to
convection. This allows us to measure the nonlinear coefficients of the corresponding quintic complex
Ginzburg-Landau equation.

PACS numbsd(s): 05.45.Gg, 47.20.Ky, 47.54r, 47.62+q

INTRODUCTION convection[7]. By using a Karhunen-Loe decomposition
to reduce spatiotemporal dynamics to a single-channel time

In the last decade, there has been intense interest amosgries, Qin, Wolf, and Chang were able to apply standard
physicists in feedback stabilization of systems which exhibitfeedback techniques to stabilize the temperature fluctuations
chaos in the absence of control. While the theory of controkxhibited during the oxidation of CO on a two-dimensional
has been a branch of mathematics and engineering for deatalytic wafer[8]. In both of these experiments, feedback
cades, it was the pioneering paper of Ott, Grebogi, andvas applied globally; i.e., to a single parameter which sets
Yorke [1] which was responsible for triggering this latest the spatiotemporal dynamics of the entire system. Stabiliza-
wave of activity in the dynamical-systems community. Soontion of unstable dynamics using true, spatially varying feed-
after this theoretical work was published, experimentalistdack has been the subject of only two previous experiments,
began demonstrating the feasibility of using feedback for thdoth concerned with Rayleigh-Bard convectiof9,10]. In a
stabilization of real chaotic systerh3]. guasi-one-dimensional geometry, HoW#§ was able to sta-

It has long been appreciated that feedback control of erbilize the quiescent state at Rayleigh numbers above the on-
ratic spatiotemporal patterns in spatially extended systems et of convection by applying feedback to a line of heaters on
a much more general and difficult problem than control ofthe underside of the bottom plate of the cell. Feedback was
single-channel or “lumped” dynamical systems. There havecomputed from shadowgraph images of the flow pattern.
been many different theoretical and computational ap-Tang and Badi10] similarly suppressed the onset of convec-
proaches to this problem. Several groups have studied sp#en in a two-dimensional convection cell, using feedback
tiotemporal chaos in coupled-map lattid€3ML’s), explor-  based on signals from an array of temperature sensors in the
ing the effect of applying feedback at discrete subsets of theterior of the fluid layer. These two experiments were de-
lattice siteq 3]. In general, the spatial density of control sites signed to suppress steady convection above onset, not to sta-
necessary for stabilization increases as the number of podbilize an erratic spatiotemporal pattern.
tive Lyapunov exponents increases. However, in convec- Binary-fluid convection in a long, narrow, annular cell is
tively unstable systems, in which the effects of feedback atin excellent physical system for exploring the control of spa-
one spatial point propagate downstream, a lower density aiotemporal dynamics with spatially distributed feedback.
control sites may be required for stabilizatipfl. In some  The first instability observed in this system, as the Rayleigh
systems, modeled by PDE’s instead of CML'’s, the dynamicsiumber is increased above onset, is to small-amplitude trav-
are such that control at a single spatial point can cause aling waves(TW’s) [11]. Because the signals produced by
regular dynamical state to invade the entire syst8nThere  this instability and the nonlinear states it triggers are oscilla-
have also been several papers in which it has been assumgty, low-frequency drifts can be eliminated using demodu-
that feedback can be applied continuously in space and/dation techniques, allowing high-precision, stable data acqui-
time. Strategies based on continuous time-delayed and/@ition [12]. Above onset, the TW’s grow in amplitude,
space-shifted feedback have proven effective in stabilizingnaking a transition to a nonlinear state whose qualitative
periodic patterns in systems which would exhibit erratic spafeatures depend on the separation ratis. This
tiotemporal behavior in the absence of feedbpgk concentration-dependent parameter describes the extent to

Experimental work on feedback control of spatially ex- which buoyancy is modified by the Soret effddi3]. For
tended systems is much less advanced. Bocaetl. used negativey, nonlinear TW's with spatially uniform and time-
time-delayed feedback to stabilize a periodic state in an efindependent wave-number and amplitude profiles can be cre-
fectively one-dimensional experiment onred-Marangoni ated. Frequency-corrected shadowgraph images of these
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TW’s, processed using the technique of complex demodula- THE COMPLEX GINZBURG-LANDAU-EQUATION
tion[12], can be used to construct accurate wave-number and MODEL

amplitude reference images. These references allow high- In our discussion of spatial feedback algorithms and data

precision measurements of the structure of other dynamical, ,is helow, it will be useful to have at hand a few results
states in the same apparafusl]. For ¢=—0.07, itis also  ptained from the CGLE model of TW convection. Because
p03_5|ble to create a non_llnear state consisting of localizeghe applicability of this model to this system has been con-
regions of TW's which drift through the system at constantsjgered extensively in the general literature and in RET]
velocity without change of shadé5]. The drift velocity of iy particular, we shall merely write down the appropriate
these TW “pulses” depends sensitively on the local Ray-version of the CGLE with minimal justification. Since this
leigh number, and this sensitivity can be exploited to presystem exhibits a subcritical bifurcation to TW’s, we retain
cisely measure and compensate small spatial variations in thenlinear terms to fifth order. Because the experiments con-
Rayleigh number, using local heaters attached to the undecern TW states which are extremely uniform in space, we do
side of the convection cell. As described below, this com-ot include any nonlinear gradient terms. Finally, since we
pensation can be automated and used to apply nonuniforstudy only unidirectional TW’s, we do not retain any terms
Rayleigh-number profiles, computed as feedback from realrepresenting a coupling with the oppositely propagating TW
time measurements of the TW amplitude and wave-numbegomponent. Thus the quintic CGLE for the complex TW
profiles. Finally, the dynamics observed in this system aramplitudeA(x,t) reads
slow enough to be followed in detail in real time. Thus this
experiment presents an ideal system for sensitively testing 7(d;+Sdy)A=g(1+ico)A+£3(1+ic,)d2A
the effect of spatial feedback on spatiotemporal dynamics. - o

Depending on parameters, nonlinear TW convection can +g(1+ic,)|AIPA+h(1+icy)|Al*A.
exhibit secondary instabilities and spatiotemporal chaos, and (1)
these dynamics are amenable to control by spatial feedback.
For 4= —0.04, bringing the Rayleigh number above onsetHere, 7, is a characteristic times is the linear TW group
leads, after a long transient, to a persistent state in whickelocity, & is a correlation lengthg>0 andh<0 are non-
spatially localized regions of TW’s form, grow in amplitude, linear saturation parameters, and i=0,1,2,4 are disper-
shrink in space, and abruptly collapse. This process repeasion coefficients. The linear coefficients, s, £, andcg,
erratically, producing a spatiotemporally chaotic state whos@nd the nonlinear dispersion coefficiepthave been experi-
fluctuations are statistically stationary. Because these irregunentally measured under conditions close to those of the
lar dynamics have been shown to have their origin in strongresent experimentl7,19. In flow-visualization experi-
nonlinear dispersion, this state has been called “dispersivenents, the pattern amplitudiE| is proportional to the gain of
chaos”[16,17. We have used spatial feedback to suppresshe visualization system, which is difficult to estimate with
this erratic behavior. Using a series of feedback algorithmsprecision. Therefore measurements of the absolute magni-
we have stabilized a state of unidirectional TW’s with spa-tudes of the saturation parametgr&nd h are uncertain to
tially uniform amplitude and wave number far onto an un-within a scale factor.
stable TW branch which is born from the quiescent state via There are two regimes in which we will find it useful to
a subcritical bifurcation. By tracing this unstable branch, weobtain results from Eqd). The first of these is one in which
have accurately measured the nonlinear coefficients of thglobal and spatial feedback are applied in order to control a
complex Ginzburg-Landau equatiofCGLE) which de- state of unidirectional TW. By “global and spatial feed-
scribes this bifurcation. In a previous publicatipt8], we  back,” we mean that we apply a stress parametamhich is
briefly described our experimental techniques and the result§e sum of a component which varies only in tiftiee global
obtained. In this paper, we discuss in greater detail the phystomponent and one or more components which vary in
cal system, the feedback algorithms used for stabilizationspace as well as timghe spatial componentsThus
and their implications for future work.

The rest of this paper is organized as follows. In the next e(X,t)=eg(t) +Aes(X, 1) +Aea(x,t) +... . 2
section, we review the CGLE model which has been used to _
describe the nonlinear evolution of TW's in this system.The global feedback componeey(t) is computed from
Next, we describe the apparatus and the procedures usedfgasurements of the spatially averaged pattern amplitude
acquire and analyze data and to apply nonuniform spatiahs=(|A(x,t)|), using an algorithm described below. The
feedback in response to the observed TW pattern. The folspatial-feedback componentses(x,t), Aes(X,t), etc., are
lowing section discusses calibration experiments which haveomputed using algorithms that were separately developed to
to be carried out to enable feedback control of TW’s andtame instabilities that arose sequentially in the experiments.
describes how uniform TW'’s are created as an initial condi-The main result of this paper is that, with suitable algorithms
tion for feedback control and how the data are corrected fofor computing the global and spatial feedback components, it
drifts and optical distortions. The specific feedback algo-is possible to maintain the system in a state of unidirectional
rithms used for this control, and the results obtained with thisSTW’s whose complex amplitude is time-independent and
feedback, are described in the next section. Finally, in thepatially uniform over a wide range of amplitudas, even
Discussion section, we describe limitations of the presenthough the uncontrolled system evolves erratically. This uni-
experiments and future applications of the feedback techform controlled state is maintained by feedback of infinitesi-
nigues we have developed. mal magnitude—that is, the deviations ofx,t) from its
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average valuéto which we refer for the moment simply as Here,R s a reference Rayleigh number, usually defined by
g) are close to the experimental noise level. In this regimethe onset of convection. In these experimestss assumed
we may inseriA(x,t) = Ag'(*“t 4% into Eq. (1) to obtain  to have a spatial variation.
The top plate of the convection cell is cooled by circulat-
e— E5AK?+gAZ+hA=0, (38 ing water which is swirled over the sapphire window to en-
hance azimuthal uniformity. The water temperature is mea-
ToAw=SAk+ Coe — C1E5AK?+ c,gAZ+ c,hAL.  (3b)  sured by a thermistor in contact with the top plate and is
regulated to+0.5 mK by a dc bridge and a temperature
Equations(3a) and (3b) represent the bifurcation diagram regulator AT is read by an ac thermistor bridge which serves
and nonlinear dispersion relation of the controlled TW stateas the input to a second temperature-regulation system. This
respectively. The quantitative results of our experiments willsystem drives two electrical heaters on the underside of the
be fit to these equations. bottom plate of the cell which are wired in parallel. A round,
Let us now consider a second regime, in which Eg. 50+, thin-film heater glued to the center of the plate pro-
describes the initial destabilization of a small-amplitude Twduces about 80% of the heat required for the temperature
state in the absence of feedback control. Following KaplanControl. The remaining heat is provided by a second system,
Kuznetsov, and Steinbefd9,20], we retain only the impor- Which is used to control the spatial profile of the bottom-

tant terms in the cubic part of the CGLE, rescaling so thaplat_e temperature. This system consists Ofl_?w’ 1004} .
. o= resistors, uniformly spaced and pressed against the underside
T0=&y=0g=1 and ¢cy;=0 and settingh=0. With A(x)

; , of the bottom plate in a ring just outside the footprint of the
=AM Dexdigx ] and Ak(x,t) = = dxp(x,t), we obtain  conyection cell. Each trim heater is wired in series with a
_ -2 2 _ 2 variable shunt resistor which is used to adjust its power dis-
(9t ST AK= LA T0(ATAK) ] = Cod, A%, (43 sipation. In previous experiments, ordinary variable resistors
(4b) were used for these adjustmefts]. In the present experi-
ments, these have been replaced by Xicor X9312 series non-
At very small TW amplitude, the source terrad,A? in Eq. volatille digital'potentiometer521], controlled by transistor-
(4a) is negligible. In this regime, nonuniformities ikk van-  transistor logic (TTL) pulses generated by a computer
ish, and the natural TW state is one of uniform wave numberfunning Labview software. The voltage on each of the trim
However, becauséc,|>1, if the amplitude grows suffi- heaters is restricted to the range 0.06—-4.5 V and is controlled
ciently large, then this term becomes important in regions ofVith @ precision of about 1 mV, as compared with the total
local amplitude nonuniformities, leading to the growth of heater voltage of 13.5-15.1 V. As described below, this sys-
corresponding local deviations in the wave number. These it#M allows us to impose an arbitrary Rayleigh-number pro-
turn reinforce the amplitude nonuniformities, via a local re-file, including one that is nominally u4n|form, with a frac-
duction in the linear growth rate—Ak? in Eq. (4b). Thus  tional azimuthal variation of 1—210 "rms, as measured
above a threshold amplitude, the system loses stability to theSing the pulse-drift techniquElS]. Because of hardware
growth of localized amplitude gradients. In R¢L7], we and software improvements, this uniformity is about two
verified that this mechanism does indeed describe the initidimes better than we have reported previoysh,15. Given
destabilization of uniform TW's and leads to the develop-2 desired Rayleigh-number profile, an optimization program
ment of dispersive chaos. Equatio@s) and (4b) suggest a calculates the required 24 heater voltages, and a Labview

feedback stabilization algorithm that will be described in theProgram applies them to the trim heaters. This process takes
Discussion section below. 60-90 sec on a 75-MHz Pentium computer. The fractional

temporal stability of the spatially averaged temperature dif-
ference applied across the convection cell is 2-5
X 10~ °rms over time scales shorter than a day. Drifts over
In this section, we briefly review aspects of our experi-longer periods are removed as described below and previ-
mental apparatus that have been the subject of previous pubusly [14,17].
lications[14,15], and we describe new features related to the Two ethanol/water mixtures were used in these experi-
application of spatial feedback in detail. The convection cellments. For the calibration experiments described in the next
is a long, narrow annulus, formed by a disc and ring masection, we used a 2.8 wt % ethanol solution at a mean tem-
chined from ULTEM 1000 polyetherimide plastic which are perature of 27.95°C, with separation ratip=—0.124,
clamped between a mirror-polished, silicon bottom plate andPrandtl number P£6.78, and Lewis numbet =0.0084
a transparent, sapphire top plate. The annular channel h§$3], to match the parameters in Ref$4] and[15]. Experi-
height d=0.2597(2) cm, radial widtH",=2.074(34, and  ments on control of dispersive chaos were performed using a
mean circumferencd’,=91.10(8 (we also ran experi- 0.4 wt% solution at a mean temperature of 27.60 °C. For this
ments in cells of slightly different geometries to obtain somefluid, = —0.020, P=5.92, andL =0.0085[13].
of the qualitative results mentioned in this papeiave In this system, convection patterns can in general take the
numbers and frequencies are rendered nondimensional Bgrm of superpositions of clockwise- and counterclockwise-
scaling with the cell heighd and the vertical thermal diffu- propagating TW’s of the fornf\(x) siMk(X)x=w(X)t]. In the
sion time r,=d?% k=45.8 sec, respectively, whereis the  experiments described here, we have dealt exclusively with
thermal diffusivity of the fluid filling the cell. As usual, the unidirectional TW patterns whose amplitude, wave number,
Rayleigh numberR is proportional toAT, the temperature and oscillation frequenci(x), k(x), andw(x) vary only on
difference applied between the bottom and top plates of thepatial scales much longer thanrik,, (in this paper, the
cell, and we define the stress parameter(R— Re)/Ryes- subscriptm denotes the spatial average of a measured pro-

(50 )A=(e—AK?)A+ 22A+AS,

APPARATUS AND PROCEDURES
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file). The mean wave number of these TW patterns is quan- . 110F ' ]
tized by the finite geometry of our convection cell, and, be- Y@w °
cause of the narrow gain curve of the linear instability in this g 55 1.05 - 7
system[17], the small-amplitude state observed at onset, af- F< J 1.00 - T
ter the decay of transients, has a mean wave nurkper 8%;{ 0.95 |- -
=27N, /T’ ,=3.035, whereN, =44 is the number of wave- 52 90k _
lengths filling the convection cell. We have restricted our : : : { :
experiments at higher amplitudes to observations of this oL 306 .
guantized state. Near onset, the typical oscillation period 'ag
Tos= 27wy, is 90—100 sec. L2 3041 .
The TW pattern is monitored using a shadowgraph system & w
[12,14] and is recorded at 360 azimuthal locations by a cir- %E 302 I
cular array of photodiodes whose signals are sampled by two > 3,00 L1 | | ! !
computers. One computer, used only for independent quan- 0° 90° 180° 270° 360°
titative data acquisition when the dynamics have been veri- POSITION IN CELL

fied to be stable, samples the system at a ratér,. for
many o§cillation cycles. Complex demo'dulation c.)f.this Sig'profiles for a state of uniform TW ap= —0.124, after linear ex-

nal [12] is used to extrach(x) andk(x) with a precision of  yan01ation to zero TW velocity. The spatial dependence of these

+3% in A and£0.2% ink. Demodulation of the time Series reference profiles is dominated by weak distortions in the optical

at several spatial points yields the oscillation frequetgy  system. The TW’s in this and all states discussed in this paper
with a fractional precision of-1x 10 *. These calculations propagate to the right.

are the source of the data displayed in Fig. 15 below.

The complex demodulation program described in Refthe apparatus. Typical profiles measured in this manner are
[12] does not require that the data be sampled at a particul&hown in Fig. 1. Both profiles exhibit a weak second-
rate with respect to the oscillation period, as long as the trugarmonic component which is caused by small distortions in
oscillation frequency can be determingadst ho¢ and alias-  the optical systerfi12,14. The amplitude profile exhibits an
ing is avoided. However, because of the narrow temporajms spatial variation of about 5%; this is stable to about
bandwidth required for accurate results, this procedure is not 304 in time. The wave-number profile exhibits a 0.5% rms
fast enough for real-time feedback control. Thus a secondpatial variation and a temporal stability of 0.2% rms. As
computer, dedicated to fast control of the system, samplegescribed below and in Ref14], these profiles can be used
the photodiode data exactly four times per cycle, and wes references to correct distortions in measurements of the
have developed a fast demodulation routine that exploits thigtryctures of other dynamical states with a precision of about
synchronization to produce amplitude and wave-number progos in amplitude and 0.2% in wave number.
files from only four such samples, using previous measure- After this calibration of the optical system, drifting pulses
ments of the oscillation period to determine the correct samgere used to measure and correct the spatial uniformity of
pling rate. These profiles are used to compute the feedbagke |gcal Rayleigh number. As in Refl5], a uniform
Rayleigh-number profile applied to the convection cell,Rayleigh-number profile is obtained by iteratively measuring
which is updated once per time stép=200-220sec dur- the spatial variation of the pulse drift velocity, and adjust-
ing control experiments. We have found that the waveing the voltages on the trim heaters untj} is uniform, since
number profiles produced by this fast demodulation routine;)dr depends strongly and monotonically on the local Ray-
exactly match those produced by full complex demodulatiomeigh number. The spatial variation of the Rayleigh number
but the amplitude profiles are distorted by noise at low amygn pe reduced te1x 102 in this manner, although this
plitudes. The consequences of this distortion will be diS'uniformity degrades somewhat in time. The measurement of

FIG. 1. Uncorrected amplitudéop) and wave-numbefbottom

cussed below. reference profiles and the adjustment of the Rayleigh-number
uniformity were iterated several times to obtain the best pos-
CALIBRATIONS, INITIAL CONDITIONS, S|_ble c_ompensatlon of thermal nonuniformities and optical
AND DATA REDUCTION distortions.

To verify that we understand the gain of our trim-heater

We begin this section by briefly reviewing the techniquessystem and the dependence of the pulse drift velocity on the
developed in Refd.14,15 for measuring and correcting the local Rayleigh number, we computed the trim-heater volt-
spatial profiles of the amplitude, wave number, and Rayleiglages necessary to produce known, nonuniform Rayleigh-
number, using time-independent TW statesyat —0.124.  number profiles, installed the calculated voltages, and mea-
These experiments were performed at constant applied tensured the resulting drift-velocity profiles. Figure 2 shows a
perature difference and with a nominally uniform spatialtypical result. The smooth curve shows the desired, sine-
Rayleigh-number profile. The first calibration was made byshaped Rayleigh-number profile. The irregular curve shows
creating a state of fully nonlinear TW’'s of nominally uni- the measured drift-velocity profile, converted to Rayleigh
form amplitude and wave number, willy, =44. As in Ref. number. The agreement between the two curves demon-
[14], the wave-number and amplitude profiles in this statestrates that a nonuniform Rayleigh-number profile can be
were measured at several different Rayleigh numbers anapplied with a precision of 1—-210 %,
linearly extrapolated to zero TW velocity to obtain reference  We now turn to the initiation and calibration of controlled
profiles which are unaffected by thermal nonuniformities inTW states at small amplitude gt= —0.020. In these experi-
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217 | | profiles Aef(X) andk.(x), all averaged over several hours
for noise reduction.

This reference-state measurement was repeated approxi-
1 . mately weekly during the course of our control experiments.
In between these calibrations, we acquired shadowgraph data
at other values of the set poiAt;, holdingAg constant after
a jump and imposing global and spatial feedback as required
to produce stable, uniform amplitude and wave-number pro-
files. Changes i\ caused the TW frequency derived from
Ry 4 the shadowgraph data and the Rayleigh number to settle to
new average values which we denaei€A;) andR(A), re-
spectively. As in Refs[14] and[17], we used the reference

1038g(x)
o
T
|

oL | | | measurements @b, andR,¢ to correct these measurements
0° 90° 180° 270° 360° for small drifts, which we attribute to slow preferential ab-
POSITION IN CELL sorption of water by the plastic walls of the convection cell.

FIG. 2. The fractional deviation of the Rayleigh number is plot- The refergnce&),ef_ and R, were interpolated smoothly in
ted as a function of position for an experiment in which a sine-UMe, and Intervening measurements made at different values
shaped Rayleigh-number profilemooth curvis imposed on the Of As were drift corrected by computind w(As) = wm(As)
convection cell. The rough curve shows measurements of the actuat @t @Nd & (Ag) =[ R(As) — Riefl/Ryer. This drift correction
Rayleigh number, made using the pulse-drift techniqueyat introduces uncertainties of 12104 in both A w/ w,¢ and
—0.124. The two curves agree to within 1%20™* rms. e.

The reference profile8,¢(x) andk.(x) are used to cor-
ments, we operate the apparatus in an unusual mode: thect the optical distortions discussed above in connection
independent parameter that is used as a set point is not thdth Fig. 1. As in Ref[14], measurements @(x) andk(x)
Rayleigh number but the spatially averaged TW amplitudemade at other values of, are corrected by computing
As. Feedback causes the Rayleigh number to vary in time a&(x)/Ae(X) andk(x) —Ke(X) + k. When we speak of the
required to keep\ stable and in space as necessary to keepiniformity of the amplitude and wave-number profiles in this
the amplitude and wave-number profiles uniform. We begirpaper, we will be referring to these corrected profiles. As
each experimental run by creating a uniform reference statmentioned previously, we have found that the wave-number
at As=A=0.0024. This amplitude is smaller than the profile measured in the small-amplitude reference state at
thresholds of any spatial instabilities and can be maintained,=A,, is stable and matches that measured yat
by global feedback alone, with a spatially uniform Rayleigh —0.124 (bottom of Fig. 1 to within the quoted uncertainty
number. We initiate these experiments by injecting localizedf about 0.2% rms. In contrast, the amplitude profile mea-
disturbances into the cell, allowing these to decompose intgured atA;=A, is rather variable in time and differs sig-
oppositely propagating packets of small-amplitude TW's,nificantly from that shown in Fig. 1. Given this discrepancy,
and suppressing TW’s that propagate in the undesired diredt is important to ask whetheh.(x) andk,(x) are indeed
tion [15]. Linear dispersion turns the remaining TW's into a reliable reference profiles which are insensitive to such ex-
spatially uniform, unidirectional state in about 1@this pro-  perimental artifacts such as nonuniformities and noise. One
cess can be accelerated using the spatial feedback describede is clarifying this issue comes from the experiment
below). During this evolution,Aq is kept equal toA,s by  whose result is shown in Fig. 3. Here, after establishing a
global feedback, using the control algorithm described instable TW state afA,=A,, we produced a localized non-
Ref. [12]. This algorithm is equivalent to the proportional uniformity in £(x) by turning up the voltage on one of the
and derivative components of standard proportional-integraltrim heaters. This caused the amplitude profile to become
derivative control. To implement this control, we make peri-strongly nonuniform[the spatial derivative ofA(x) re-
odic measurements of the amplitude growth raje sembles the Rayleigh-number profile, with a slight broaden-
=A;11dAm/dt and of the fractional amplitude erroA ing of the peak but no spatial shiftwvhile the wave-number
=In(A,/Ay). At intervals of 900 to 1300 sec, we subtract a profile is completely unaffected. These observations are con-
correction ,y+ 7,A from the latest applied stress param- sistent with Eqs(4a) and (4b). This insensitivity ofk(x) to
eterey(t), where n, , are positive feedback gain constants. nonuniformities inA(x) or e(x) at the small amplitudé\
Equation(1) implies that the derivative gain, should be set suggests thal,(x) is indeed an accurate and robust refer-
equal to the characteristic time, for efficient control. In  ence measurement. Thus, when we actually do observe dis-
practice, we use a somewhat smaller gain to avoid oscillatortions ink(x), it will be sensible to conclude that these are
tions. The proportional gaim, is set empirically. This glo- due to real dynamical effects and not just to measurement
bal feedback is applied during all measurements described ierror. Indeed, we will see below thk{x) becomes increas-
this paper(at higher amplitudes, where additional spatialingly and systematically distorted &s, is increased, and it
feedback components are required for stability, we find thatvill turn out that this is due to an increasing sensitivity of
the system develops inertia and requires a weak integrdd(x) to distortion in A(x). We will therefore be led to
component for stability After transients have decayed, we invent a feedback algorithm that consists of modifying
measure the Rayleigh numb®&,, the spatially averaged A.{(x) so as to rendek(x) uniform. We will find that this
TW frequencyw,s, and the wave-number and amplitude modification causef «(x) to come into agreement with the
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T abruptly collapses and is followed by a weaker secondary
A 110 I burst(in blue-green As described in detail in Ref17], this
Eg 1.05 7 series of events, which is triggered by the instability dis-
<§t '5 1.00 . cussed in relation to Eq&4a) and(4b) above, repeats several
TS 0951 _ times before evolving into steady-state dispersive chaos.
o= Under global feedback, dispersive-chaos-like behavior is
080T | . ! ! | also seen, but the route to this behaviorAgsis increased
- 3.04 ' ' ' follows a different scenario than that shown in Fig. 4. Uni-
W 303} . form TW states are stable under global feedback upgdo
:2) /\/\_\/\//\,\_\/\/ =A;~0.0029. Above this threshold, the uniform TW state
Z 302 7 loses stability to growing, propagating amplitude modula-
5 3.01 _ tions. Figure 5 shows the nature of this instability. In the first
z part of this run, made af,=0.0030, the initially uniform
10 — : : : : amplitude profile develops diagonal stripes of increasing
contrast, characteristic of the growth of the lowest spatial
. 5L | Fourier mode. WherAg is increased to 0.003fat time t
= =15h in the run in Fig. § the modulation growth rate in-
= creases. In the last15 h of this run, when the modulations
or | have grown to high amplitude, they become spatially and
| | | | | temporally nonuniform. The growth of the modulation am-
i 90° 180°  270°  360° plitude can be more easily appreciated in Fig. 6, which
POSITION IN CELL shows the standard deviation of the amplitude profile,

normalized to the spatially averaged amplitudlg, as a

FIG. 3. Response of a TW state a,=A=0.0024 to a function of time during the run of Fig. 5. This measure of the
strongly nonuniform Rayleigh-number profilshown in the bottom  nonuniformity of the amplitude profile grows exponentially
frame. The amplitude profile, shown in the top frame, exhibits afor the first 15 h of this run and then shows an erratic satu-
peak in its spatial derivative that coincides with but is slightly wider ration. The subsequent evolution of the system remains er-
than the peak in the Rayleigh-number profile. The wave-numberatic and exhibits many of the hallmarks of dispersive chaos
profile (middle frame is unaffected by the nonuniform Rayleigh without global feedback.
number. Because this run was conducted in a cell with a slightly Figure 7 shows the dependence Anof the growth rate
different geometry than thgt u§ed in the rest of the experiments, th%1 and the frequencw; of the lowest-Fourier-mode ampli-
mean wave number here is slightly different from that shown else} ;qe modulations produced by this instability. The zero
where in this paper. crossing of vy, defines the instability thresholdA;

=0.002 874). Themodulation frequencyw;=0.0497(4) is

amplitude profile shown in the top of Fig. 1, suggesting thatindependent oA.. For comparison, the phase velocity of the
the original distortion iMAr(x) measured afs= A is just  underlying TW’s corresponds to a frequency of 0.072.
an experimental artifact due to integrated noise. Figure 8 shows the structure of the modulations produced
by this instability, measured during a phase of nearly vanish-
ing growth rate alA;=0.0293(4)>A;. To reduce noise, we
acquired a long data set, computed the wave-number and
amplitude profiles at each time step, shifted them to a co-

The quantitative data reported in the remainder of thignoving frame of reference, and averaged in time. The am-
paper were obtained by using global and spatial feedback tBlitude modulations shown in Fig. 4 are accompanied by
maintain constant and uniform amplitude and wave-numbefodulations in the wave number. Both profiles exhibit a
profiles over a wide range of TW amplitudes. The proceduréearly sinusoidal shape, with the wave-number profile lag-
was to change the set amplituéle, adjust the form of the ging 125°+5° behind(i.e., to the left of the amplitude pro-
feedback if necessary, wait for stability, and record TW datdile.
in a steady state. This was done at many different values of In order to proceed to high TW amplitudes, these modu-
A, with periodic recalibrations a.=A,.;. The main issues lations must be damped by imposing spatial feedback. The
discussed in this section are the nature of the mechanisn@eneral principle that amplitudes grow exponentially with
that destabilize uniform TW’s at high amplitudes and theRayleigh number near onset led us to choose a feedback
development of appropriate feedback algorithms to controfomponent proportional to the logarithm of the amplitude
them. profile. Specifically, we apply a total stress parameter

To put these experiments in perspective, we begin thig(X,t) =ey(t) +Aei(X,t), whereey(t) is the stress param-
section with a brief description of the evolution of this sys-eter produced by the global feedback component in(Ey.
tem in the absence of control. This is shown in Fig. 4. Be-and
ginning with a small-amplitude, uniform TW state &
=R, We turn off the global feedback and increase Agq(X,1) = — x1 IN[A(X+ 6Xq,1)/Ag]. %)
slightly above zero. This leads to growth Ag,, and then to
the formation of a spatially localized burst of TW’s. This Here, y;>0 is a gain parameter, anfk,;>w; is a spatial
main burst, which appears in red and yellow in Fig. 4,shift set to match the propagation of the amplitude modula-

RESULTS OF EXPERIMENTS
ON SPATIAL-FEEDBACK CONTROL
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FIG. 4. (Color) False-color, space-time representation of the TW amplitude in an initially spatially uniform state of small-amplitude,
right-going TW’s, illustrating the growth of a burst of TW’s in the absence of control. The color sequence purple—dark blue—light
blue—green—yellow—red encodes increasing TW amplitude. The initial TW state was prepared under global control as described in the text.
Three hours before the start of this data set, control was turned off, and the Rayleigh number was increased by ae fraction
=0.000 385). This caused the TW’s to grow up and form a spatially localized burst, which then collapsed. This data set is the same one
that is represented by Figs. 3—7 in REf7].

tion during the time delay required to calculate and apply theéo a certain value ofA;. Above A,=0.0108@2), we were
spatial feedback. Turning on this feedback component rapaot able to stabilize the system only by increasing Above
idly eliminates amplitude modulations. This is illustrated this second threshold, we observe that the system loses sta-
dramatically in the false-color image in Fig. 9: turning on thebility to growing, propagating wave-number modulations.
gain y, causes an almost instantaneous flattening of the iniTheir growth ratey, and frequencyw, are shown as func-
tially modulated amplitude profile. This effect is also re-tions of Ag in Fig. 11. Interestingly, the modulation fre-
corded in Fig. 10, in which the fractional spatial standardquency w, depends strongly omg, in contrast to the
deviations of the amplitude and wave-number profiles aremplitude-independent modulation frequensy shown in
plotted as functions of time for this run. The sharp decreasfig. 7. Figure 12 shows the structure of the modulated state
in oalAp is again clear in the top frame of the figure. The produced by this second instability, recorded with=A,.
bottom frame shows that the wave-number profile requireThe sinusoidal wave-number modulation is preceded in
abou 8 h to become completely uniform again. phase by a weakly nonuniform, nonsinusoidal amplitude pro-

Over the range of amplitudes for which the feedback offile. The spatial feedback of E¢5) causes a corresponding,
Eq. (5 is effective, it keeps the system entirely uniform. inverted profile of the stress parametgK).
Typically, we measuress/A,,~0.02 and oy /k,,~0.002, The propagating wave-number modulation seen in Fig. 12
and the applied stress-parameter profile exhibits a nonuniforcan be thought of as a modulation in TW velocity. In uni-
mity 0,<2-3%x10 %. The effectiveness of this amplitude form states of nonlinear TW's, it is well known that, as the
feedback is not sensitively dependent on the value of th®ayleigh number is increased, the TW amplitude increases
gain parametey,;—changes by a factor of 2 do not degrade and the TW velocity decreas¢$4]. This consideration led
control once it is established. A, is increased, we find that us to try to damp these modulations by adding a second
x1 must be increased angk; must be decreased in order to spatial feedback component proportional to the gradient of
retain stabilization. For our update time steAt the wave-number profile. That is, we applied a total stress
=200-220 sec, the values gf required for stability range parametek(x,t) =g4(t) +As;(X,t) +Aey(X,t), where
from 0.005 to 0.030.

Amplitude feedback alone can maintain stability only up Aes(X,1) = x20yK(X+ 6X5,1). (6)
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(Color) False-color, space-time representation of the TW amplitude in an initially spatially uniform state of right-going TW’s

illustrating the growth of propagating amplitude modulations under global feedback. Initially, the seApaias set to 0.0030, just above
the instability threshold\,, and diagonal stripes of increasing modulation depth reveal the growth of the instability. Attifrteh, A was
further increased to 0.0035, accelerating the growth of the modulations and leading to spatial and temporal variations in their strength.

As before, y, is a positive gain parameter, and the spatialexact value ofy,, but higher amplitudes require gains up to
shift dx,«<w, compensates for propagation delay. This feed-y,=1.2.

back algorithm does indeed cause the wave-number modula- Raising the set point above0.013 causes a new series of
tions due to the second instability to decay, albeit slowly,problems. With increasing, the wave-number profile de-
allowing the set poinf to be stably increased well beyond velops a static distortion of increasing magnitude, despite the
the thresholdA,. As with the amplitude feedback used to suppression of propagating wave-number modulations by the
suppress the first instability, stabilization is insensitive to thefeedback of Eq(6). At the same time, the stress-parameter

0.6

0.2

FIG. 6.

field e(x) required to keep the amplitude profile flat becomes
L L L B B BB L increasingly nonuniform. Ultimately, whek(x) becomes
sufficiently distorted, the coupling between wave-number
variations and the amplitude growth rate described above in
relation to Eqs(4a and (4b) causes the system to become
dispersively unstable and impossible to control.

It was noted above that the reference profilg(x) mea-
sured atA;=0.0024 appears distorted relative to the ampli-
tude profile shown for nonlinear TW’s gi= —0.124 in Fig.

1. If this distortion is real, then, in light of the source term
C,9,A? in the wave-number evolution equation, Ed@a),
forcing the TW amplitude profile to match a nonuniform
. Ll b e L reference profile may be the cause of the wave-number dis-
0 10 20 30 tortions seen at higlAs. This intuition led us to attempt to
TIME (HOURS) correct the amplitude distortion by modifyirfg.(x) at ev-

The fractional amplitude nonuniformity, /A, is plot-  €ry time step, using a correction of the fordye(x)

B s B s I
PN T T T T T I I A N N SO A

ted as a function of time during the run of Fig. 5. An initial phase of _’Aref(.x) X f_(X), where f(x) depends on the wave-number
exponential growti(up tot~151h) is followed by erratic behavior nonuniformityAk(x) =k(x) —k, in some way that obeys the
of the highly distorted amplitude profile. condition f(x)—1 asAk(x)—0. Clearly, since this recipe
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= 0.002 —————— — — reference-amplitude profile from a measuremeni\é&{x),

I<—( C & ] this suggests that we should integrat&(x) in space and

< 0.001 E - take the square root. On this basis, we tried a reference-

E L oy & T ] amplitude correction function of the form

§ - - : 1/2

0.0 - T X

e - o« ] f(x)= 1+Xff Ak(x")dx’ @)

o C e ] 0

|<_t -0.001 - % b N

g‘ C e @ Despite the vagueness of the derivation of B, we have

g 0002 L+t L e e found that, for a range of positive values pf, this correc-

tion algorithm actually restores the system to a stable, uni-

g8 0.052 —— — T i form state. Figures 13 and 14 show the results for a run at

5 B ] A;=0.010. Initially, x; was set to 0, forcing(x)=1, and

é 0.051 E k(x) and e(x) were rather distorted: Fig. 13 shows that

S Losob + ] o /km~0.006 ando,~4x10 4 at the beginning of this

o g + + LA ¥ % + N}% ] run. The slight dip ino/k,, at time 15 h is due to a small,

§ 0049 + % ] accidental decrease A&y . At time t=18 h, y; was increased

£ i ] from 0 to 0.006, and this causédx) to grow completely

3 0048 ) 7 uniform over the next 10 h, with little change in the unifor-

5 P L N mi@y of §(X) or A(x) [we remind the reader that amplitgde

= 00 0.0025 0.0030 0.0035 uniformity refers to the flatness of the measured amplitude
SET POINT Ag profile as normalized bA«(x), which is changing slowly

due to the iterated correction of E(f)]. So our first obser-
FIG. 7. The dimensionless growth r&@ and frequencyb) of ~ vation is that this amplitude-reference correction procedure
modulations of the amplitude profile with no spatial feedback aredoes indeed cause the wave-number profile to grow more
plotted as functions of the set poinA;. Above A=A, uniform.
=0.002 874), TW's controlled with global feedback alone are un- A more telling indication of the correctness of this proce-
stable and require spatial feedback. dure is seen in the actual amplitude and wave-number pro-
files imposed on the system by this procedure. Figure 14
calls for repeated multiplication @%(x) by f(x), this pro- ~ Shows these profilesprrected using the reference profiles in
cedure must either go unstable or converge to a unifornfid- 1. The dashed curves show the profiles measured at the
wave-number profile, for which (x)=1. If the procedure Peginning of the period in Fig. 13, as enforced by spatial
converges and the final stress-parameter profile remains urfg€dback whose effect is to bring the amplitude profile into
form, then it will be very interesting to examine the final 2greement with the reference profile acquiredigtArer.
amplitude-reference profild,(x). The nonuniformity ofA(x) shows the distortion of this ref-
We successfully applied this reference-profile modifica-rénce profile with respect to that in the top of Fig. 1. The
tion scheme by implementing an algorithm inspired by Eq.dashed wave-number profile in Fig. 14 shows the static dis-

(4a). The content of this equation can be paraphrased dortion caused by imposing the incorrect amplitude profile.
aAk~3a,A2. Roughly speaking, in order to obtain a 'ne full curves in Fig. 14 show the profiles measured at the

end of the period in Fig. 13. The application of E@) has
made bothk(x) and A(x) come into agreement with the

110 F 3 . LT .
reference profiles shown in Fig. 1. Our conclusion is that the

1.05 — amplitude reference profile in Fig. 1, and not the profile mea-

1.00 | sured atA;=A, IS the correct measure of amplitude uni-

formity in this system, and that the distortion kifx) is in-
0.95 - ] deed caused by the error in the reference amplitude profile
measured ah .

NORMALIZED
AMPLITUDE

= | | | ] [

. 8:82 F1 I I r - This reference-correction procedure has allowed us to cre-
i ate uniform TW's with much higher amplitudes—up Aq,
= 3.04 . =0.0255—uwith little increase ior, . However, this observa-
z tion is no guarantee that the formula in EJ) is exactly
Y 3031 f correct; it only shows that this procedure makes an improve-
§ ment toA«(X) at each time step and has an effective gain

302 | L ' ' L= that is small enough for stability.

0° 90° 180° 270° 360°

The observation that the wave-number profile is distorted
POSITION IN CELL

by the imposition of a distorted amplitude reference profile
FIG. 8. Comoving time averages of the amplitude and wave/€d US to perform a series of experiments in which we set

number profiles of a modulated TW state/a=0.02934). This  f(X)=1 in Eq. (7) and measured the changes produced in

stationary modulated state was created by first increasingpove ~ K(X) by abruptly changing the amplitude reference profile.

A, to cause modulations to grow up and then decreasintg ~A,  We accomplished this by multiplyind\(x) by a time-

to obtain a nearly zero growth rate. independent, nonuniform distortioAa(x) which is only
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FIG. 9. (Color) False-color, space-time representation of the TW’s in a state in which an initial amplitude modulation is controlled by
spatial feedback according to E&). An abrupt decrease in the modulation amplitude is observed immediately after increasing the value of
x1 from 0 to 0.005 at=0.7 h.

&
slightly different from unity. Our results can be summarized LU
by the statement that the imposed distortioa(x) causes a & 0002 F 7]
wave-number distortionAk(x)~a[ Aa(x+ 6x)—1], with E . ]
parametersy and 6x that depend om\s. The sensitivity of g 0.001 .
o« L ]
o} - —.— 1
Z  00f —e— ]
0.10 - | 35 -0.001F , o, (@ ]
cSA ' 8 I T R B L oo el I B
A =
A
™ 0.05 | : ~
>8_ F L rrr vt 1 11111
ol ! ) I Q 0059 F { 3
[ F : ]
0.005 — I | ] 3 ooss| ——
- ] E ]
0.004 £ 0057 F —— E
Gk 0.003 - N % E —— E
T 056 | 3
km 0.002 - - % 0 E —— 3
0.001 | 2 0.055 i )
0 | | | | g 0.054 E TN TN TN TN N T T Y T DU T T Y [ T S N [ B
0 5 10 15 0.009 0.010 0.011 0.012 0.013
TIME (HOURS) SET POINT Ag

FIG. 10. The fractional standard deviations of the amplitude FIG. 11. The dimensionless growth rdg and frequencyb) of
(top frame and wave numbefbottom are plotted as functions of wave-number modulations observed for the closed-loop system
time for the run of Fig. 9. Turning on the feedback in Eg).at time  with spatial feedback &,(x) are plotted as functions &. Above
t=0.7 h causes an abrupt decreaserjfY A, and a much slower A;=A,=0.0108@2), the TW’ssuffer a second instability and re-
decrease i /K, . quire an additional spatial feedback component.
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FIG. 12. Comoving time averages of the modulated amplitude, r ]

wave-number, and stress-parameter profiles of a steadily modulated 1 ;—‘ L ‘—:

TW state produced by the second instability. In contrast to the state
of Fig. 8, the weak amplitude feedback shown in the bottom frame
(with x;=0.025 keeps the amplitude profile nearly uniform in
space.

0 10 20 30 40
TIME (HOURS)

FIG. 13. Measures of the uniformity of the TW state are plotted

. . . as functions of time during a run in which the amplitude reference
the wave-number profile to the amplitude reference profilepofile was modified at every time step according to Ef). (a)

measured by the coefficient is quite strong and appears t0 Fractional spatial standard deviation of the amplitude proft.
increase with increasings. This observation explains why Fractional spatial standard deviation of the wave-number prodile.

it becomes increasingly difficult to maintain stability Asis ~ Spatial standard deviation of the stress-parameter profile. Initially,
increased without feedback correction of distortions iny; was set to 0, and\; was set to 0.010. A brief decrease Aq
Arei(X). between times 14.6 and 17.3 h caused the spatially averaged ampli-

The final result of the spatial feedback described by Eqgstude A, to drop to 0.0075; this is seen in the dipdn/k., at time
(5)—(7) is that a TW state with uniform amplitude and wave t=15.5h. Then, at time 18.0 ly; was increased to 0.006, causing
number can be maintained in a steady state for a wide rangeclear decrease in the nonuniformity of the wave-number profile.
of TW amplitudes. The spatial variation in the Rayleigh-
number profile required for stability is only 24104 for ~ rately and yield the following values of the cubic and quintic
all the data discussed in this paper. Thus we are indeed stgoefficients in the CGLE of Eq1):
bilizing uniform TW states with spatial feedback of infini-
tesimal magnitude. An important question is whether the sta- g=13.2+0.5, 7, 'c,g=— 754+ 36, (8a)
bility of the TW state is lost when the spatial feedback is
turned off. We have not studied this issue extensively, but  h=(—7.1+1.1) X 10%, 751c4h=(2.1i 1.1)x 10°.
we have verified that the uniform state does go unstable (8b)
when the control is turned off.

The final results of these experiments, shown in Fig. 15The coefficients of the cubic terms in the CGLE can be com-
are measurements ef(A;) and Aw(A,) for unidirectional ~ pared with the less-precise values presented in REf$and
TW states controlled with spatial feedback. As shown in Fig[19]. In Ref.[17], we measured, '=9.81+0.19 in a cell of
15(a), the closed feedback loop has allowed us to trace theadial widthT',=1.677. With this, the measurements in Eq.
subcritical open-loop bifurcation diagram up to amplitudes(8a) yield a nonlinear frequency-renormalization coefficient
much higher than the thresholds , of the two secondary c¢,=—5.82+0.37. This value is smaller than but still consis-
instabilities, which are indicated by horizontal lines. Figuretent with the value—7.5+=3.2 presented in Ref17]. In the
15(b) shows the amplitude dependence of the oscillation frewider cell used in the present work{;1 may be closer to the
quency. To see if these measurements are consistent with tiigeoretical value of 9.1640.008[17], which would imply
predictions of the quintic CGLE presented in E¢®a and  ¢,=—6.24+0.38. Both of these two new estimates forlie
3(b), we fit both data sets to a function of the fori(A,) somewhat below the range 7—12 measured in R&f,, but
=a+bAZ+cAl The bestfit functions, shown as the those measurements were made using a different procedure
smooth curves in Figs. 18 and(b), describe the data accu- and geometry and thus may not be directly comparable with
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FIG. 14. Amplitude(top) and wave-numbetbottom) profiles Ao 0

for two periods during the run of Fig. 13, corrected using the ref-
erence profiles in Fig. 1 instead of those measuredatA ;.

Dashed curves: nonuniform initial profiles, averaged over the pe-
riod t=6.4 to 12.3 hours in Fig. 13. Full curves: final profiles, B I T T N N

[ S T T T I T A N A

averaged over the period 35.1-43.9 h in Fig. 13. Application of the 0 0.005 0.010 0.015 0.020 0.025
correction in Eq(7) has made(x) more uniform and has brought A

A(x) and A,¢(x) into much better agreement with the amplitude ) )
reference in Fig. 1. FIG. 15. (a) The stress paramete A) in controlled, uniform

TW states is plotted against the set polqt, with the axes inter-

our results. While the analyses presented in Refg] and changed so as to produce_a bifurcati_on diagra_m._The subsdrig _
[19] were able to yield values for the cubic coefficients in thePe€en dropped to emphasize the point that this is an open-loop bi-
CGLE with reasonable precision, they were certainly unabl urcatlon_dlagra_m that has_ been traced in closed loop. The data have
to determine the quintic coefficients at alhe measurement °¢€" shifted slightly to give(A;—0)—0. The long- and short-

of these coefficients has relied crucially on the ability toqalSth lines Sho.W th.e instability threSh°w§ and Az, respec-
stabilize uniform TW using spatial feedback tively. The curve is a fit to the solution of.the CGLE given in Eq.
(33). (b) The oscillation frequencA w(A;) is plotted againsfg.
Again, the data are shifted to givew(A;—0)—0; the actual os-
DISCUSSION cillation frequency at zero amplitude is 3.14. The curve is a fit of

In this work, we have used global and spatial feedback o%he form given in Eq/(3b).

infinitesimal magnitude to stabilize uniform TW’s on the un-
stable branch of the bifurcation diagram which describes theumerical simulations of the CGLE25]. Amplitude feed-
subcritical transition to convection. Our results demonstratdack suppresses the amplitude modulations produced by this
that spatially distributed feedback can be used to suppresastability, and this then causes wave-number modulations to
erratic spatiotemporal behavior in an extended system. Thidecay. The second, a phase instability suffered under ampli-
control has allowed us to trace out the unstable branch andide feedback, has not been considered previously. Suppres-
thus to make accurate measurements of the cubic and quintsion of this second instability is accomplished by spatial
coefficients of the complex Ginzburg-Landau equationfeedback proportional to the gradient of the wave number.
which describes uniform, unidirectional TW's in this system.  Our ability to maintain control of this system is affected
These measurements, combined with the linear coefficientsy experimental imperfections such as noise and distortions
presented in Refl17] and the recent measurement of thein the shadowgraph signals and delays in the application of
coefficient that governs the cubic nonlinear interaction befeedback, as well as by intrinsic properties of the dynamics
tween oppositely propagating TW[22], constitute a com- such as the size of the basin of attraction of the controlled
plete quantitative description of weakly nonlinear TW con-state. Our understanding of these issues is imperfect and
vection in this experimental system. In order to extend thisvariable. For example, we have little knowledge of the nature
model so that it quantitatively describes dispersive chaosyf the basin of attraction of the controlled state beyond our
two further ingredients will be required. They &i¢ a mea- empirical understanding of how nonuniform a TW state can
surement of the coefficients of nonlinear gradient terms irbecome before control is lost. Our experience is that the
the CGLE[23] and (ii) a quantitative accounting of the in- delays in our feedback are short enough that they do not
teraction between TW’s and the ethanol concentration fieldaffect the stability of the closed-loop system. The issue we
which is known to have a profound effect on the behavior ofunderstand the best is the effect of distortions in the com-
high-amplitude convectiofl7,24. puted amplitude and wave-number profiles: a distorted TW
We have found that the closed-loop system exhibits twastate cannot be brought stably to high amplitudes, and the
interesting modulational instabilities. The first of these, chardistortion must be corrected if control is to be maintained.
acterized by propagating amplitude and wave-number moduFhis aspect of our dynamical system has taught us what the
lations under global feedback alone, has been observed imiform TW state actually is: it is the state whose amplitude
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and wave-number profiles match those shown in Fig. 1, asoutine we have developed for the present experiments on
opposed to that observed at the small TW amplitagde, in unidirectional TW’s could easily be extended to separate the
which the amplitude profile is distorted by noise. opposite TW components for individual control, it is hard to
The results of these experiments have certain limitationsmagine how spatial feedback could be used to couple to the
We were not able to continue tracing the unstable branch oflow diffusion of ethanol and control its effect on the TW's.
the bifurcation diagram up to the saddle node and onto th&or this reason, we have avoided tackling this difficult prob-
postulated stable upper branch. This was due not to limitalem by only starting our experiments in a state of small-
tions of the techniques employed but to a catastrophic failuramplitude, unidirectional TW’s. However, asis made less
of the experimental apparatus. We did not make a seriousegative, the nonlinear dispersion responsible for dispersive
study of the loss of stability following cessation of spatial bursting becomes stronglt9], and it is reasonable to expect
feedback, due to lack of time. And we did not attempt tothat the effects of the concentration field on the TW’s be-
perform full control of dispersive chaos—that is, to force thecome weaker. Thus it appears likely that there is a regime of
system into a stable TW state, starting from an erratic staté‘pure dispersive chaos” at smalif in which concentration
This is discussed below. effects are unimportant relative to nonlinear dispersion. A
The techniques developed in these experiments open upvery simple spatial feedback scheme could be used to sup-
wide range of interesting experiments. Here, we suggegtress this pure dispersive chaos. Recall from the discussion
three avenues of future research: of Egs.(4a and(4b) above that the wave-number deviations
(i) Control of the Eckhaus instability. The Eckhaus insta-pumped by localized amplitude gradients reinforce those gra-
bility of fully nonlinear TW’s manifests itself in propagating dients in turn by reducing the local linear growth rate, which
wave-number modulations which are triggered when thds proportional tos — £&3Ak? [here, we have retained the pa-
Rayleigh number is brought below a wave-number-rameteré2, which was set to unity for convenience in the
dependent thresholdl4]. This behavior is quite similar to  derivation of Eqs(4a) and(4b)]. This feedback loop can be

that produced by the second instability described in Figs. 1yt by applying the spatial feedback component
and 12 and should be susceptible to suppression by spatial

feedback of the form described by E@). Indeed, we rou- Ag3(X,t) = x3£5AKA (X, 1). C)

tinely apply such feedback "by hand" to control this insta- We have found in numerical simulations of the CGLE that

bility, so as to put the system into tig =44 state of Fig. 1 . . .
and create a reproducible reference state. By suppressing {tgning on_sp_atlal feedbaqk of th's form completely homog-
enizes an initial state of dispersive ch4@§], for a range of

Eckhaus instability, a measurement of the true marginal sta-_. ; . T :
bility curve could be made. gainsys near unity. In fact, it was our initial intention to use

(i) Control of unstable pulses. The drifting pulses de—:)h'f (.:r?ntgct‘?igeo”tgmh;oeStr?:"greaﬁgr ga(ptir;megtael rTVrY‘nzer
scribed in Ref.[15] give way to dispersive chaos asis ut, In practice, w v v W wave-nu

increased from-0.07 to—0.04[16]. There is quite possibly profile to become sufficiently nonuniform to trigger this in-
a range of interr.nediateb in whic.h TW pulses are only stability mechanism. It appears likely that this form of spatial

weakly unstable. These might be susceptible to control bgﬁgﬁ’ﬁ%‘;ﬂgﬂ;ﬁm" control of pure dispersive chaos at

spatial feedback, using as-yet-undetermined control algo-
rithms.

(iii) Full control of dispersive chaos. A= —0.02, the
dynamics of steady-state dispersive chaos are influenced We would like to thank loannis Kevrekidis for extensive
both by the interaction between bursts of oppositely propadiscussions, advice, and collaboration during the course of
gating TW's and by the interaction between TW'’s and thethis work. G.F. gratefully acknowledges the financial support
ethanol concentration fiel@4]. While the fast demodulation of the Deutsche Forschungsgemeinschatt.
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