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Spatial-feedback control of dispersive chaos in binary-fluid convection
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Dispersive chaos is a dynamical state that consists of the repeated, irregular growth and abrupt decay of
spatially localized bursts of traveling waves. This state can be observed just above onset in convection in
binary fluids at small, negative separation ratioc, in a long, quasi-one-dimensional geometry. We describe
experiments in which this erratic behavior is suppressed by applying as feedback a spatially varying Rayleigh-
number profile computed from the measured convection pattern. With the appropriate feedback algorithm, an
initial state consisting of unidirectional traveling waves of spatially uniform amplitude and wave number can
be maintained in a steady state over a large fraction of the unstable branch of the subcritical bifurcation to
convection. This allows us to measure the nonlinear coefficients of the corresponding quintic complex
Ginzburg-Landau equation.

PACS number~s!: 05.45.Gg, 47.20.Ky, 47.54.1r, 47.62.1q
o
ib
tro
d
n

st
o
ist
th

e
s
o
v

ap
sp

th
es
o
e
a

y

ic
e

m
d/
d
in
pa

x-

e

ime
ard
ions
al

ck
ets
iza-
d-
nts,

on-
on
as

rn.
c-
ck
the

e-
sta-

is
pa-
k.

igh
rav-
y

lla-
u-
ui-
,
ive

nt to

-
cre-
ese
INTRODUCTION

In the last decade, there has been intense interest am
physicists in feedback stabilization of systems which exh
chaos in the absence of control. While the theory of con
has been a branch of mathematics and engineering for
cades, it was the pioneering paper of Ott, Grebogi, a
Yorke @1# which was responsible for triggering this late
wave of activity in the dynamical-systems community. So
after this theoretical work was published, experimental
began demonstrating the feasibility of using feedback for
stabilization of real chaotic systems@2#.

It has long been appreciated that feedback control of
ratic spatiotemporal patterns in spatially extended system
a much more general and difficult problem than control
single-channel or ‘‘lumped’’ dynamical systems. There ha
been many different theoretical and computational
proaches to this problem. Several groups have studied
tiotemporal chaos in coupled-map lattices~CML’s!, explor-
ing the effect of applying feedback at discrete subsets of
lattice sites@3#. In general, the spatial density of control sit
necessary for stabilization increases as the number of p
tive Lyapunov exponents increases. However, in conv
tively unstable systems, in which the effects of feedback
one spatial point propagate downstream, a lower densit
control sites may be required for stabilization@4#. In some
systems, modeled by PDE’s instead of CML’s, the dynam
are such that control at a single spatial point can caus
regular dynamical state to invade the entire system@5#. There
have also been several papers in which it has been assu
that feedback can be applied continuously in space an
time. Strategies based on continuous time-delayed an
space-shifted feedback have proven effective in stabiliz
periodic patterns in systems which would exhibit erratic s
tiotemporal behavior in the absence of feedback@6#.

Experimental work on feedback control of spatially e
tended systems is much less advanced. Bocalettiet al. used
time-delayed feedback to stabilize a periodic state in an
fectively one-dimensional experiment on Be´nard-Marangoni
PRE 611063-651X/2000/61~3!/2519~14!/$15.00
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convection@7#. By using a Karhunen-Loe`ve decomposition
to reduce spatiotemporal dynamics to a single-channel t
series, Qin, Wolf, and Chang were able to apply stand
feedback techniques to stabilize the temperature fluctuat
exhibited during the oxidation of CO on a two-dimension
catalytic wafer@8#. In both of these experiments, feedba
was applied globally; i.e., to a single parameter which s
the spatiotemporal dynamics of the entire system. Stabil
tion of unstable dynamics using true, spatially varying fee
back has been the subject of only two previous experime
both concerned with Rayleigh-Be´nard convection@9,10#. In a
quasi-one-dimensional geometry, Howle@9# was able to sta-
bilize the quiescent state at Rayleigh numbers above the
set of convection by applying feedback to a line of heaters
the underside of the bottom plate of the cell. Feedback w
computed from shadowgraph images of the flow patte
Tang and Bau@10# similarly suppressed the onset of conve
tion in a two-dimensional convection cell, using feedba
based on signals from an array of temperature sensors in
interior of the fluid layer. These two experiments were d
signed to suppress steady convection above onset, not to
bilize an erratic spatiotemporal pattern.

Binary-fluid convection in a long, narrow, annular cell
an excellent physical system for exploring the control of s
tiotemporal dynamics with spatially distributed feedbac
The first instability observed in this system, as the Rayle
number is increased above onset, is to small-amplitude t
eling waves~TW’s! @11#. Because the signals produced b
this instability and the nonlinear states it triggers are osci
tory, low-frequency drifts can be eliminated using demod
lation techniques, allowing high-precision, stable data acq
sition @12#. Above onset, the TW’s grow in amplitude
making a transition to a nonlinear state whose qualitat
features depend on the separation ratioc. This
concentration-dependent parameter describes the exte
which buoyancy is modified by the Soret effect@13#. For
negativec, nonlinear TW’s with spatially uniform and time
independent wave-number and amplitude profiles can be
ated. Frequency-corrected shadowgraph images of th
2519 ©2000 The American Physical Society
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2520 PRE 61PAUL KOLODNER AND GEORG FLÄTGEN
TW’s, processed using the technique of complex demod
tion @12#, can be used to construct accurate wave-number
amplitude reference images. These references allow h
precision measurements of the structure of other dynam
states in the same apparatus@14#. For c&20.07, it is also
possible to create a nonlinear state consisting of locali
regions of TW’s which drift through the system at consta
velocity without change of shape@15#. The drift velocity of
these TW ‘‘pulses’’ depends sensitively on the local Ra
leigh number, and this sensitivity can be exploited to p
cisely measure and compensate small spatial variations in
Rayleigh number, using local heaters attached to the un
side of the convection cell. As described below, this co
pensation can be automated and used to apply nonuni
Rayleigh-number profiles, computed as feedback from r
time measurements of the TW amplitude and wave-num
profiles. Finally, the dynamics observed in this system
slow enough to be followed in detail in real time. Thus th
experiment presents an ideal system for sensitively tes
the effect of spatial feedback on spatiotemporal dynamic

Depending on parameters, nonlinear TW convection
exhibit secondary instabilities and spatiotemporal chaos,
these dynamics are amenable to control by spatial feedb
For c*20.04, bringing the Rayleigh number above on
leads, after a long transient, to a persistent state in wh
spatially localized regions of TW’s form, grow in amplitud
shrink in space, and abruptly collapse. This process rep
erratically, producing a spatiotemporally chaotic state wh
fluctuations are statistically stationary. Because these irre
lar dynamics have been shown to have their origin in stro
nonlinear dispersion, this state has been called ‘‘disper
chaos’’ @16,17#. We have used spatial feedback to suppr
this erratic behavior. Using a series of feedback algorith
we have stabilized a state of unidirectional TW’s with sp
tially uniform amplitude and wave number far onto an u
stable TW branch which is born from the quiescent state
a subcritical bifurcation. By tracing this unstable branch,
have accurately measured the nonlinear coefficients of
complex Ginzburg-Landau equation~CGLE! which de-
scribes this bifurcation. In a previous publication@18#, we
briefly described our experimental techniques and the res
obtained. In this paper, we discuss in greater detail the ph
cal system, the feedback algorithms used for stabilizat
and their implications for future work.

The rest of this paper is organized as follows. In the n
section, we review the CGLE model which has been use
describe the nonlinear evolution of TW’s in this syste
Next, we describe the apparatus and the procedures us
acquire and analyze data and to apply nonuniform spa
feedback in response to the observed TW pattern. The
lowing section discusses calibration experiments which h
to be carried out to enable feedback control of TW’s a
describes how uniform TW’s are created as an initial con
tion for feedback control and how the data are corrected
drifts and optical distortions. The specific feedback alg
rithms used for this control, and the results obtained with t
feedback, are described in the next section. Finally, in
Discussion section, we describe limitations of the pres
experiments and future applications of the feedback te
niques we have developed.
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THE COMPLEX GINZBURG-LANDAU-EQUATION
MODEL

In our discussion of spatial feedback algorithms and d
analysis below, it will be useful to have at hand a few resu
obtained from the CGLE model of TW convection. Becau
the applicability of this model to this system has been c
sidered extensively in the general literature and in Ref.@17#
in particular, we shall merely write down the appropria
version of the CGLE with minimal justification. Since th
system exhibits a subcritical bifurcation to TW’s, we reta
nonlinear terms to fifth order. Because the experiments c
cern TW states which are extremely uniform in space, we
not include any nonlinear gradient terms. Finally, since
study only unidirectional TW’s, we do not retain any term
representing a coupling with the oppositely propagating T
component. Thus the quintic CGLE for the complex T
amplitudeÃ(x,t) reads

t0~] t1s]x!Ã5«~11 ic0!Ã1j0
2~11 ic1!]x

2Ã

1g~11 ic2!uÃu2Ã1h~11 ic4!uÃu4Ã.

~1!

Here, t0 is a characteristic time,s is the linear TW group
velocity, j0 is a correlation length,g.0 andh,0 are non-
linear saturation parameters, andci , i 50,1,2,4 are disper-
sion coefficients. The linear coefficientst0 , s, j0

2, and c0,1

and the nonlinear dispersion coefficientc2 have been experi-
mentally measured under conditions close to those of
present experiments@17,19#. In flow-visualization experi-
ments, the pattern amplitudeuÃu is proportional to the gain of
the visualization system, which is difficult to estimate wi
precision. Therefore measurements of the absolute ma
tudes of the saturation parametersg and h are uncertain to
within a scale factor.

There are two regimes in which we will find it useful t
obtain results from Eq.~1!. The first of these is one in which
global and spatial feedback are applied in order to contro
state of unidirectional TW. By ‘‘global and spatial feed
back,’’ we mean that we apply a stress parameter« which is
the sum of a component which varies only in time~the global
component! and one or more components which vary
space as well as time~the spatial components!. Thus

«~x,t !5«g~ t !1D«1~x,t !1D«2~x,t !1... . ~2!

The global feedback component«g(t) is computed from
measurements of the spatially averaged pattern ampli
As5^uÃ(x,t)u&, using an algorithm described below. Th
spatial-feedback componentsD«1(x,t), D«2(x,t), etc., are
computed using algorithms that were separately develope
tame instabilities that arose sequentially in the experime
The main result of this paper is that, with suitable algorith
for computing the global and spatial feedback component
is possible to maintain the system in a state of unidirectio
TW’s whose complex amplitude is time-independent a
spatially uniform over a wide range of amplitudesAs , even
though the uncontrolled system evolves erratically. This u
form controlled state is maintained by feedback of infinite
mal magnitude—that is, the deviations of«(x,t) from its
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PRE 61 2521SPATIAL-FEEDBACK CONTROL OF DISPERSIVE . . .
average value~to which we refer for the moment simply a
«! are close to the experimental noise level. In this regim
we may insertÃ(x,t)5Ase

i (Dvt2Dkx) into Eq. ~1! to obtain

«2j0
2Dk21gAs

21hAs
450, ~3a!

t0Dv5sDk1c0«2c1j0
2Dk21c2gAs

21c4hAs
4. ~3b!

Equations~3a! and ~3b! represent the bifurcation diagram
and nonlinear dispersion relation of the controlled TW sta
respectively. The quantitative results of our experiments w
be fit to these equations.

Let us now consider a second regime, in which Eq.~1!
describes the initial destabilization of a small-amplitude T
state in the absence of feedback control. Following Kap
Kuznetsov, and Steinberg@19,20#, we retain only the impor-
tant terms in the cubic part of the CGLE, rescaling so t
t05j05g51 and c0,150 and settingh50. With Ã(x)
5A(x,t)exp@if(x,t)# andDk(x,t)52]xf(x,t), we obtain

~] t1s]x!Dk5]x@A22]x~A2Dk!#2c2]xA
2, ~4a!

~] t1s]x!A5~«2Dk2!A1]x
2A1A3. ~4b!

At very small TW amplitude, the source termc2]xA
2 in Eq.

~4a! is negligible. In this regime, nonuniformities inDk van-
ish, and the natural TW state is one of uniform wave numb
However, becauseuc2u@1, if the amplitude grows suffi-
ciently large, then this term becomes important in regions
local amplitude nonuniformities, leading to the growth
corresponding local deviations in the wave number. Thes
turn reinforce the amplitude nonuniformities, via a local r
duction in the linear growth rate«2Dk2 in Eq. ~4b!. Thus
above a threshold amplitude, the system loses stability to
growth of localized amplitude gradients. In Ref.@17#, we
verified that this mechanism does indeed describe the in
destabilization of uniform TW’s and leads to the develo
ment of dispersive chaos. Equations~4a! and ~4b! suggest a
feedback stabilization algorithm that will be described in t
Discussion section below.

APPARATUS AND PROCEDURES

In this section, we briefly review aspects of our expe
mental apparatus that have been the subject of previous
lications@14,15#, and we describe new features related to
application of spatial feedback in detail. The convection c
is a long, narrow annulus, formed by a disc and ring m
chined from ULTEM 1000 polyetherimide plastic which a
clamped between a mirror-polished, silicon bottom plate a
a transparent, sapphire top plate. The annular channel
height d50.2597(2) cm, radial widthG r52.074(3)d, and
mean circumferenceGf591.10(8)d ~we also ran experi-
ments in cells of slightly different geometries to obtain so
of the qualitative results mentioned in this paper!. Wave
numbers and frequencies are rendered nondimensiona
scaling with the cell heightd and the vertical thermal diffu-
sion time tv5d2/k545.8 sec, respectively, wherek is the
thermal diffusivity of the fluid filling the cell. As usual, th
Rayleigh numberR is proportional toDT, the temperature
difference applied between the bottom and top plates of
cell, and we define the stress parameter«[(R2Rref)/Rref .
,
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Here,Rref is a reference Rayleigh number, usually defined
the onset of convection. In these experiments,« is assumed
to have a spatial variation.

The top plate of the convection cell is cooled by circula
ing water which is swirled over the sapphire window to e
hance azimuthal uniformity. The water temperature is m
sured by a thermistor in contact with the top plate and
regulated to60.5 mK by a dc bridge and a temperatu
regulator.DT is read by an ac thermistor bridge which serv
as the input to a second temperature-regulation system.
system drives two electrical heaters on the underside of
bottom plate of the cell which are wired in parallel. A roun
50-V, thin-film heater glued to the center of the plate pr
duces about 80% of the heat required for the tempera
control. The remaining heat is provided by a second syst
which is used to control the spatial profile of the bottom
plate temperature. This system consists of 241

10-W, 100-V
resistors, uniformly spaced and pressed against the unde
of the bottom plate in a ring just outside the footprint of t
convection cell. Each trim heater is wired in series with
variable shunt resistor which is used to adjust its power d
sipation. In previous experiments, ordinary variable resist
were used for these adjustments@15#. In the present experi-
ments, these have been replaced by Xicor X9312 series
volatile digital potentiometers@21#, controlled by transistor-
transistor logic ~TTL! pulses generated by a comput
running Labview software. The voltage on each of the tr
heaters is restricted to the range 0.06–4.5 V and is contro
with a precision of about 1 mV, as compared with the to
heater voltage of 13.5–15.1 V. As described below, this s
tem allows us to impose an arbitrary Rayleigh-number p
file, including one that is nominally uniform, with a frac
tional azimuthal variation of 1 – 231024rms, as measured
using the pulse-drift technique@15#. Because of hardware
and software improvements, this uniformity is about tw
times better than we have reported previously@14,15#. Given
a desired Rayleigh-number profile, an optimization progr
calculates the required 24 heater voltages, and a Labv
program applies them to the trim heaters. This process ta
60–90 sec on a 75-MHz Pentium computer. The fractio
temporal stability of the spatially averaged temperature
ference applied across the convection cell is 2
31025 rms over time scales shorter than a day. Drifts ov
longer periods are removed as described below and pr
ously @14,17#.

Two ethanol/water mixtures were used in these exp
ments. For the calibration experiments described in the n
section, we used a 2.8 wt % ethanol solution at a mean t
perature of 27.95 °C, with separation ratioc520.124,
Prandtl number Pr56.78, and Lewis numberL50.0084
@13#, to match the parameters in Refs.@14# and@15#. Experi-
ments on control of dispersive chaos were performed usin
0.4 wt % solution at a mean temperature of 27.60 °C. For
fluid, c520.020, Pr55.92, andL50.0085@13#.

In this system, convection patterns can in general take
form of superpositions of clockwise- and counterclockwis
propagating TW’s of the formA(x)sin@k(x)x6v(x)t#. In the
experiments described here, we have dealt exclusively w
unidirectional TW patterns whose amplitude, wave numb
and oscillation frequencyA(x), k(x), andv(x) vary only on
spatial scales much longer than 2p/km ~in this paper, the
subscriptm denotes the spatial average of a measured p
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2522 PRE 61PAUL KOLODNER AND GEORG FLÄTGEN
file!. The mean wave number of these TW patterns is qu
tized by the finite geometry of our convection cell, and, b
cause of the narrow gain curve of the linear instability in t
system@17#, the small-amplitude state observed at onset,
ter the decay of transients, has a mean wave numbekm
52pNr /Gf53.035, whereNr544 is the number of wave
lengths filling the convection cell. We have restricted o
experiments at higher amplitudes to observations of
quantized state. Near onset, the typical oscillation per
tosc52p/vm is 90–100 sec.

The TW pattern is monitored using a shadowgraph sys
@12,14# and is recorded at 360 azimuthal locations by a c
cular array of photodiodes whose signals are sampled by
computers. One computer, used only for independent qu
titative data acquisition when the dynamics have been v
fied to be stable, samples the system at a rate;4/tosc for
many oscillation cycles. Complex demodulation of this s
nal @12# is used to extractA(x) andk(x) with a precision of
63% in A and60.2% ink. Demodulation of the time serie
at several spatial points yields the oscillation frequencyvm
with a fractional precision of;131024. These calculations
are the source of the data displayed in Fig. 15 below.

The complex demodulation program described in R
@12# does not require that the data be sampled at a partic
rate with respect to the oscillation period, as long as the
oscillation frequency can be determinedpost hoc, and alias-
ing is avoided. However, because of the narrow tempo
bandwidth required for accurate results, this procedure is
fast enough for real-time feedback control. Thus a sec
computer, dedicated to fast control of the system, sam
the photodiode data exactly four times per cycle, and
have developed a fast demodulation routine that exploits
synchronization to produce amplitude and wave-number p
files from only four such samples, using previous measu
ments of the oscillation period to determine the correct sa
pling rate. These profiles are used to compute the feedb
Rayleigh-number profile applied to the convection ce
which is updated once per time stepDt5200– 220 sec dur-
ing control experiments. We have found that the wa
number profiles produced by this fast demodulation rout
exactly match those produced by full complex demodulati
but the amplitude profiles are distorted by noise at low a
plitudes. The consequences of this distortion will be d
cussed below.

CALIBRATIONS, INITIAL CONDITIONS,
AND DATA REDUCTION

We begin this section by briefly reviewing the techniqu
developed in Refs.@14,15# for measuring and correcting th
spatial profiles of the amplitude, wave number, and Rayle
number, using time-independent TW states atc520.124.
These experiments were performed at constant applied
perature difference and with a nominally uniform spat
Rayleigh-number profile. The first calibration was made
creating a state of fully nonlinear TW’s of nominally un
form amplitude and wave number, withNr544. As in Ref.
@14#, the wave-number and amplitude profiles in this st
were measured at several different Rayleigh numbers
linearly extrapolated to zero TW velocity to obtain referen
profiles which are unaffected by thermal nonuniformities
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the apparatus. Typical profiles measured in this manner
shown in Fig. 1. Both profiles exhibit a weak secon
harmonic component which is caused by small distortions
the optical system@12,14#. The amplitude profile exhibits an
rms spatial variation of about 5%; this is stable to abo
63% in time. The wave-number profile exhibits a 0.5% rm
spatial variation and a temporal stability of 0.2% rms.
described below and in Ref.@14#, these profiles can be use
as references to correct distortions in measurements of
structures of other dynamical states with a precision of ab
3% in amplitude and 0.2% in wave number.

After this calibration of the optical system, drifting pulse
were used to measure and correct the spatial uniformity
the local Rayleigh number. As in Ref.@15#, a uniform
Rayleigh-number profile is obtained by iteratively measur
the spatial variation of the pulse drift velocityvdr and adjust-
ing the voltages on the trim heaters untilvdr is uniform, since
vdr depends strongly and monotonically on the local Ra
leigh number. The spatial variation of the Rayleigh numb
can be reduced to&131024 in this manner, although this
uniformity degrades somewhat in time. The measuremen
reference profiles and the adjustment of the Rayleigh-num
uniformity were iterated several times to obtain the best p
sible compensation of thermal nonuniformities and opti
distortions.

To verify that we understand the gain of our trim-hea
system and the dependence of the pulse drift velocity on
local Rayleigh number, we computed the trim-heater vo
ages necessary to produce known, nonuniform Rayle
number profiles, installed the calculated voltages, and m
sured the resulting drift-velocity profiles. Figure 2 shows
typical result. The smooth curve shows the desired, s
shaped Rayleigh-number profile. The irregular curve sho
the measured drift-velocity profile, converted to Raylei
number. The agreement between the two curves dem
strates that a nonuniform Rayleigh-number profile can
applied with a precision of 1 – 231024.

We now turn to the initiation and calibration of controlle
TW states at small amplitude atc520.020. In these experi

FIG. 1. Uncorrected amplitude~top! and wave-number~bottom!
profiles for a state of uniform TW atc520.124, after linear ex-
trapolation to zero TW velocity. The spatial dependence of th
reference profiles is dominated by weak distortions in the opt
system. The TW’s in this and all states discussed in this pa
propagate to the right.
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ments, we operate the apparatus in an unusual mode
independent parameter that is used as a set point is no
Rayleigh number but the spatially averaged TW amplitu
As . Feedback causes the Rayleigh number to vary in tim
required to keepAs stable and in space as necessary to k
the amplitude and wave-number profiles uniform. We be
each experimental run by creating a uniform reference s
at As5Aref50.0024. This amplitude is smaller than th
thresholds of any spatial instabilities and can be maintai
by global feedback alone, with a spatially uniform Raylei
number. We initiate these experiments by injecting localiz
disturbances into the cell, allowing these to decompose
oppositely propagating packets of small-amplitude TW
and suppressing TW’s that propagate in the undesired d
tion @15#. Linear dispersion turns the remaining TW’s into
spatially uniform, unidirectional state in about 10 h~this pro-
cess can be accelerated using the spatial feedback desc
below!. During this evolution,As is kept equal toAref by
global feedback, using the control algorithm described
Ref. @12#. This algorithm is equivalent to the proportion
and derivative components of standard proportional-integ
derivative control. To implement this control, we make pe
odic measurements of the amplitude growth rateg
5Am

21dAm /dt and of the fractional amplitude errorD
5 ln(Am/As). At intervals of 900 to 1300 sec, we subtract
correctionh1g1h2D from the latest applied stress param
eter«g(t), whereh1,2 are positive feedback gain constan
Equation~1! implies that the derivative gainh1 should be set
equal to the characteristic timet0 for efficient control. In
practice, we use a somewhat smaller gain to avoid osc
tions. The proportional gainh2 is set empirically. This glo-
bal feedback is applied during all measurements describe
this paper~at higher amplitudes, where additional spat
feedback components are required for stability, we find t
the system develops inertia and requires a weak inte
component for stability!. After transients have decayed, w
measure the Rayleigh numberRref , the spatially averaged
TW frequencyv ref , and the wave-number and amplitud

FIG. 2. The fractional deviation of the Rayleigh number is pl
ted as a function of position for an experiment in which a sin
shaped Rayleigh-number profile~smooth curve! is imposed on the
convection cell. The rough curve shows measurements of the a
Rayleigh number, made using the pulse-drift technique atc5
20.124. The two curves agree to within 1 – 231024 rms.
the
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profiles Aref(x) and kref(x), all averaged over several hou
for noise reduction.

This reference-state measurement was repeated app
mately weekly during the course of our control experimen
In between these calibrations, we acquired shadowgraph
at other values of the set pointAs , holdingAs constant after
a jump and imposing global and spatial feedback as requ
to produce stable, uniform amplitude and wave-number p
files. Changes inAs caused the TW frequency derived fro
the shadowgraph data and the Rayleigh number to settl
new average values which we denotev(As) andR(As), re-
spectively. As in Refs.@14# and @17#, we used the referenc
measurements ofv ref andRref to correct these measuremen
for small drifts, which we attribute to slow preferential a
sorption of water by the plastic walls of the convection ce
The referencesv ref and Rref were interpolated smoothly in
time, and intervening measurements made at different va
of As were drift corrected by computingDv(As)5vm(As)
2v ref and«(As)5@R(As)2Rref#/Rref . This drift correction
introduces uncertainties of 1 – 231024 in both Dv/v ref and
«.

The reference profilesAref(x) andkref(x) are used to cor-
rect the optical distortions discussed above in connec
with Fig. 1. As in Ref.@14#, measurements ofA(x) andk(x)
made at other values ofAs are corrected by computing
A(x)/Aref(x) andk(x)2kref(x)1km . When we speak of the
uniformity of the amplitude and wave-number profiles in th
paper, we will be referring to these corrected profiles.
mentioned previously, we have found that the wave-num
profile measured in the small-amplitude reference state
As5Aref is stable and matches that measured atc5
20.124 ~bottom of Fig. 1! to within the quoted uncertainty
of about 0.2% rms. In contrast, the amplitude profile me
sured atAs5Aref is rather variable in time and differs sig
nificantly from that shown in Fig. 1. Given this discrepanc
it is important to ask whetherAref(x) andkref(x) are indeed
reliable reference profiles which are insensitive to such
perimental artifacts such as nonuniformities and noise. O
clue is clarifying this issue comes from the experime
whose result is shown in Fig. 3. Here, after establishin
stable TW state atAs5Aref , we produced a localized non
uniformity in «(x) by turning up the voltage on one of th
trim heaters. This caused the amplitude profile to beco
strongly nonuniform @the spatial derivative ofA(x) re-
sembles the Rayleigh-number profile, with a slight broad
ing of the peak but no spatial shift#, while the wave-number
profile is completely unaffected. These observations are c
sistent with Eqs.~4a! and ~4b!. This insensitivity ofk(x) to
nonuniformities inA(x) or «(x) at the small amplitudeAref
suggests thatkref(x) is indeed an accurate and robust refe
ence measurement. Thus, when we actually do observe
tortions ink(x), it will be sensible to conclude that these a
due to real dynamical effects and not just to measurem
error. Indeed, we will see below thatk(x) becomes increas
ingly and systematically distorted asAs is increased, and it
will turn out that this is due to an increasing sensitivity
k(x) to distortion in Aref(x). We will therefore be led to
invent a feedback algorithm that consists of modifyi
Aref(x) so as to renderk(x) uniform. We will find that this
modification causesAref(x) to come into agreement with th
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2524 PRE 61PAUL KOLODNER AND GEORG FLÄTGEN
amplitude profile shown in the top of Fig. 1, suggesting t
the original distortion inAref(x) measured atAs5Aref is just
an experimental artifact due to integrated noise.

RESULTS OF EXPERIMENTS
ON SPATIAL-FEEDBACK CONTROL

The quantitative data reported in the remainder of t
paper were obtained by using global and spatial feedbac
maintain constant and uniform amplitude and wave-num
profiles over a wide range of TW amplitudes. The proced
was to change the set amplitudeAs , adjust the form of the
feedback if necessary, wait for stability, and record TW d
in a steady state. This was done at many different value
As , with periodic recalibrations atAs5Aref . The main issues
discussed in this section are the nature of the mechan
that destabilize uniform TW’s at high amplitudes and t
development of appropriate feedback algorithms to con
them.

To put these experiments in perspective, we begin
section with a brief description of the evolution of this sy
tem in the absence of control. This is shown in Fig. 4. B
ginning with a small-amplitude, uniform TW state atR
5Rref , we turn off the global feedback and increase«
slightly above zero. This leads to growth inAm and then to
the formation of a spatially localized burst of TW’s. Th
main burst, which appears in red and yellow in Fig.

FIG. 3. Response of a TW state atAs5Aref50.0024 to a
strongly nonuniform Rayleigh-number profile~shown in the bottom
frame!. The amplitude profile, shown in the top frame, exhibits
peak in its spatial derivative that coincides with but is slightly wid
than the peak in the Rayleigh-number profile. The wave-num
profile ~middle frame! is unaffected by the nonuniform Rayleig
number. Because this run was conducted in a cell with a slig
different geometry than that used in the rest of the experiments
mean wave number here is slightly different from that shown e
where in this paper.
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abruptly collapses and is followed by a weaker second
burst~in blue-green!. As described in detail in Ref.@17#, this
series of events, which is triggered by the instability d
cussed in relation to Eqs.~4a! and~4b! above, repeats severa
times before evolving into steady-state dispersive chaos.

Under global feedback, dispersive-chaos-like behavio
also seen, but the route to this behavior asAs is increased
follows a different scenario than that shown in Fig. 4. Un
form TW states are stable under global feedback up toAs
5A1;0.0029. Above this threshold, the uniform TW sta
loses stability to growing, propagating amplitude modu
tions. Figure 5 shows the nature of this instability. In the fi
part of this run, made atAs50.0030, the initially uniform
amplitude profile develops diagonal stripes of increas
contrast, characteristic of the growth of the lowest spa
Fourier mode. WhenAs is increased to 0.0035~at time t
515 h in the run in Fig. 5!, the modulation growth rate in
creases. In the last;15 h of this run, when the modulation
have grown to high amplitude, they become spatially a
temporally nonuniform. The growth of the modulation am
plitude can be more easily appreciated in Fig. 6, wh
shows the standard deviation of the amplitude profilesA ,
normalized to the spatially averaged amplitudeAm , as a
function of time during the run of Fig. 5. This measure of t
nonuniformity of the amplitude profile grows exponential
for the first 15 h of this run and then shows an erratic sa
ration. The subsequent evolution of the system remains
ratic and exhibits many of the hallmarks of dispersive cha
without global feedback.

Figure 7 shows the dependence onAs of the growth rate
g1 and the frequencyv1 of the lowest-Fourier-mode ampli
tude modulations produced by this instability. The ze
crossing of g1 defines the instability thresholdA1
50.002 87(4). Themodulation frequencyv150.0497(4) is
independent ofAs . For comparison, the phase velocity of th
underlying TW’s corresponds to a frequency of 0.072.

Figure 8 shows the structure of the modulations produ
by this instability, measured during a phase of nearly vani
ing growth rate atAs50.0293(4)'A1 . To reduce noise, we
acquired a long data set, computed the wave-number
amplitude profiles at each time step, shifted them to a
moving frame of reference, and averaged in time. The a
plitude modulations shown in Fig. 4 are accompanied
modulations in the wave number. Both profiles exhibit
nearly sinusoidal shape, with the wave-number profile l
ging 125°65° behind~i.e., to the left of! the amplitude pro-
file.

In order to proceed to high TW amplitudes, these mod
lations must be damped by imposing spatial feedback.
general principle that amplitudes grow exponentially w
Rayleigh number near onset led us to choose a feedb
component proportional to the logarithm of the amplitu
profile. Specifically, we apply a total stress parame
«(x,t)5«g(t)1D«1(x,t), where«g(t) is the stress param
eter produced by the global feedback component in Eq.~2!,
and

D«1~x,t !52x1 ln@A~x1dx1 ,t !/As#. ~5!

Here, x1.0 is a gain parameter, anddx1}v1 is a spatial
shift set to match the propagation of the amplitude modu
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PRE 61 2525SPATIAL-FEEDBACK CONTROL OF DISPERSIVE . . .
FIG. 4. ~Color! False-color, space-time representation of the TW amplitude in an initially spatially uniform state of small-amp
right-going TW’s, illustrating the growth of a burst of TW’s in the absence of control. The color sequence purple–dark blu
blue–green–yellow–red encodes increasing TW amplitude. The initial TW state was prepared under global control as described i
Three hours before the start of this data set, control was turned off, and the Rayleigh number was increased by a fr«
50.000 38(5). This caused the TW’s to grow up and form a spatially localized burst, which then collapsed. This data set is the sa
that is represented by Figs. 3–7 in Ref.@17#.
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tion during the time delay required to calculate and apply
spatial feedback. Turning on this feedback component r
idly eliminates amplitude modulations. This is illustrate
dramatically in the false-color image in Fig. 9: turning on t
gain x1 causes an almost instantaneous flattening of the
tially modulated amplitude profile. This effect is also r
corded in Fig. 10, in which the fractional spatial standa
deviations of the amplitude and wave-number profiles
plotted as functions of time for this run. The sharp decre
in sA /Am is again clear in the top frame of the figure. Th
bottom frame shows that the wave-number profile requ
about 8 h to become completely uniform again.

Over the range of amplitudes for which the feedback
Eq. ~5! is effective, it keeps the system entirely uniform
Typically, we measuresA /Am;0.02 and sk /km;0.002,
and the applied stress-parameter profile exhibits a nonun
mity s«&2 – 331024. The effectiveness of this amplitud
feedback is not sensitively dependent on the value of
gain parameterx1—changes by a factor of 2 do not degra
control once it is established. AsAs is increased, we find tha
x1 must be increased anddx1 must be decreased in order
retain stabilization. For our update time stepDt
5200– 220 sec, the values ofx1 required for stability range
from 0.005 to 0.030.

Amplitude feedback alone can maintain stability only
e
p-

i-

e
e

s

f

r-

e

to a certain value ofAs . Above A250.010 80(2), we were
not able to stabilize the system only by increasingx1 . Above
this second threshold, we observe that the system loses
bility to growing, propagating wave-number modulation
Their growth rateg2 and frequencyv2 are shown as func-
tions of As in Fig. 11. Interestingly, the modulation fre
quency v2 depends strongly onAs , in contrast to the
amplitude-independent modulation frequencyv1 shown in
Fig. 7. Figure 12 shows the structure of the modulated s
produced by this second instability, recorded withAs5A2 .
The sinusoidal wave-number modulation is preceded
phase by a weakly nonuniform, nonsinusoidal amplitude p
file. The spatial feedback of Eq.~5! causes a corresponding
inverted profile of the stress parameter«(x).

The propagating wave-number modulation seen in Fig.
can be thought of as a modulation in TW velocity. In un
form states of nonlinear TW’s, it is well known that, as th
Rayleigh number is increased, the TW amplitude increa
and the TW velocity decreases@14#. This consideration led
us to try to damp these modulations by adding a sec
spatial feedback component proportional to the gradien
the wave-number profile. That is, we applied a total str
parameter«(x,t)5«g(t)1D«1(x,t)1D«2(x,t), where

D«2~x,t !5x2]xk~x1dx2 ,t !. ~6!
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FIG. 5. ~Color! False-color, space-time representation of the TW amplitude in an initially spatially uniform state of right-going
illustrating the growth of propagating amplitude modulations under global feedback. Initially, the set pointAs was set to 0.0030, just abov
the instability thresholdA1 , and diagonal stripes of increasing modulation depth reveal the growth of the instability. At timet515 h, As was
further increased to 0.0035, accelerating the growth of the modulations and leading to spatial and temporal variations in their str
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As before,x2 is a positive gain parameter, and the spa
shift dx2}v2 compensates for propagation delay. This fee
back algorithm does indeed cause the wave-number mod
tions due to the second instability to decay, albeit slow
allowing the set pointAs to be stably increased well beyon
the thresholdA2 . As with the amplitude feedback used
suppress the first instability, stabilization is insensitive to

FIG. 6. The fractional amplitude nonuniformitysA /Am is plot-
ted as a function of time during the run of Fig. 5. An initial phase
exponential growth~up to t;15 h! is followed by erratic behavior
of the highly distorted amplitude profile.
l
-
la-
,

e

exact value ofx2 , but higher amplitudes require gains up
x251.2.

Raising the set point above;0.013 causes a new series
problems. With increasingAs , the wave-number profile de
velops a static distortion of increasing magnitude, despite
suppression of propagating wave-number modulations by
feedback of Eq.~6!. At the same time, the stress-parame
field «(x) required to keep the amplitude profile flat becom
increasingly nonuniform. Ultimately, whenk(x) becomes
sufficiently distorted, the coupling between wave-numb
variations and the amplitude growth rate described abov
relation to Eqs.~4a! and ~4b! causes the system to becom
dispersively unstable and impossible to control.

It was noted above that the reference profileAref(x) mea-
sured atAs50.0024 appears distorted relative to the amp
tude profile shown for nonlinear TW’s atc520.124 in Fig.
1. If this distortion is real, then, in light of the source ter
c2]xA

2 in the wave-number evolution equation, Eq.~4a!,
forcing the TW amplitude profile to match a nonunifor
reference profile may be the cause of the wave-number
tortions seen at highAs . This intuition led us to attempt to
correct the amplitude distortion by modifyingAref(x) at ev-
ery time step, using a correction of the formAref(x)
→Aref(x)3 f (x), where f (x) depends on the wave-numbe
nonuniformityDk(x)[k(x)2km in some way that obeys th
condition f (x)→1 asDk(x)→0. Clearly, since this recipe
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PRE 61 2527SPATIAL-FEEDBACK CONTROL OF DISPERSIVE . . .
calls for repeated multiplication ofAref(x) by f (x), this pro-
cedure must either go unstable or converge to a unifo
wave-number profile, for whichf (x)51. If the procedure
converges and the final stress-parameter profile remains
form, then it will be very interesting to examine the fin
amplitude-reference profileAref(x).

We successfully applied this reference-profile modific
tion scheme by implementing an algorithm inspired by E
~4a!. The content of this equation can be paraphrased
] tDk;]xA

2. Roughly speaking, in order to obtain

FIG. 7. The dimensionless growth rate~a! and frequency~b! of
modulations of the amplitude profile with no spatial feedback
plotted as functions of the set pointAs . Above As5A1

50.002 87(4), TW’s controlled with global feedback alone are u
stable and require spatial feedback.

FIG. 8. Comoving time averages of the amplitude and wa
number profiles of a modulated TW state atAs50.0293(4). This
stationary modulated state was created by first increasingAs above
A1 to cause modulations to grow up and then decreasingAs to ;A1

to obtain a nearly zero growth rate.
m

ni-

-
.
as

reference-amplitude profile from a measurement ofDk(x),
this suggests that we should integrateDk(x) in space and
take the square root. On this basis, we tried a referen
amplitude correction function of the form

f ~x!5F11x fE
0

x

Dk~x8!dx8G1/2

. ~7!

Despite the vagueness of the derivation of Eq.~7!, we have
found that, for a range of positive values ofx f , this correc-
tion algorithm actually restores the system to a stable, u
form state. Figures 13 and 14 show the results for a run
As50.010. Initially, x f was set to 0, forcingf (x)51, and
k(x) and «(x) were rather distorted: Fig. 13 shows th
sk /km;0.006 ands«;431024 at the beginning of this
run. The slight dip insk /km at time 15 h is due to a small
accidental decrease inAs . At time t518 h, x f was increased
from 0 to 0.006, and this causedk(x) to grow completely
uniform over the next 10 h, with little change in the unifo
mity of «(x) or A(x) @we remind the reader that amplitud
uniformity refers to the flatness of the measured amplitu
profile as normalized byAref(x), which is changing slowly
due to the iterated correction of Eq.~7!#. So our first obser-
vation is that this amplitude-reference correction proced
does indeed cause the wave-number profile to grow m
uniform.

A more telling indication of the correctness of this proc
dure is seen in the actual amplitude and wave-number
files imposed on the system by this procedure. Figure
shows these profiles,corrected using the reference profiles
Fig. 1. The dashed curves show the profiles measured a
beginning of the period in Fig. 13, as enforced by spa
feedback whose effect is to bring the amplitude profile in
agreement with the reference profile acquired atAs5Aref .
The nonuniformity ofA(x) shows the distortion of this ref
erence profile with respect to that in the top of Fig. 1. T
dashed wave-number profile in Fig. 14 shows the static
tortion caused by imposing the incorrect amplitude profi
The full curves in Fig. 14 show the profiles measured at
end of the period in Fig. 13. The application of Eq.~7! has
made bothk(x) and A(x) come into agreement with th
reference profiles shown in Fig. 1. Our conclusion is that
amplitude reference profile in Fig. 1, and not the profile m
sured atAs5Aref , is the correct measure of amplitude un
formity in this system, and that the distortion ink(x) is in-
deed caused by the error in the reference amplitude pro
measured atAref .

This reference-correction procedure has allowed us to
ate uniform TW’s with much higher amplitudes—up toAm
50.0255—with little increase ins« . However, this observa
tion is no guarantee that the formula in Eq.~7! is exactly
correct; it only shows that this procedure makes an impro
ment toAref(x) at each time step and has an effective g
that is small enough for stability.

The observation that the wave-number profile is distor
by the imposition of a distorted amplitude reference pro
led us to perform a series of experiments in which we
f (x)51 in Eq. ~7! and measured the changes produced
k(x) by abruptly changing the amplitude reference profi
We accomplished this by multiplyingAref(x) by a time-
independent, nonuniform distortionDa(x) which is only

e
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FIG. 9. ~Color! False-color, space-time representation of the TW’s in a state in which an initial amplitude modulation is contro
spatial feedback according to Eq.~5!. An abrupt decrease in the modulation amplitude is observed immediately after increasing the v
x1 from 0 to 0.005 att50.7 h.
ed

d
f tem

-

slightly different from unity. Our results can be summariz
by the statement that the imposed distortionDa(x) causes a
wave-number distortionDk(x)'a@Da(x1dx)21#, with
parametersa and dx that depend onAs . The sensitivity of

FIG. 10. The fractional standard deviations of the amplitu
~top frame! and wave number~bottom! are plotted as functions o
time for the run of Fig. 9. Turning on the feedback in Eq.~5! at time
t50.7 h causes an abrupt decrease insA /Am and a much slower
decrease insk /km .
e FIG. 11. The dimensionless growth rate~a! and frequency~b! of
wave-number modulations observed for the closed-loop sys
with spatial feedbackD«1(x) are plotted as functions ofAs . Above
As5A250.010 80(2), the TW’ssuffer a second instability and re
quire an additional spatial feedback component.
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PRE 61 2529SPATIAL-FEEDBACK CONTROL OF DISPERSIVE . . .
the wave-number profile to the amplitude reference profi
measured by the coefficienta, is quite strong and appears
increase with increasingAs . This observation explains wh
it becomes increasingly difficult to maintain stability asAs is
increased without feedback correction of distortions
Aref(x).

The final result of the spatial feedback described by E
~5!–~7! is that a TW state with uniform amplitude and wa
number can be maintained in a steady state for a wide ra
of TW amplitudes. The spatial variation in the Rayleig
number profile required for stability is only 2 – 431024 for
all the data discussed in this paper. Thus we are indeed
bilizing uniform TW states with spatial feedback of infin
tesimal magnitude. An important question is whether the
bility of the TW state is lost when the spatial feedback
turned off. We have not studied this issue extensively,
we have verified that the uniform state does go unsta
when the control is turned off.

The final results of these experiments, shown in Fig.
are measurements of«(As) and Dv(As) for unidirectional
TW states controlled with spatial feedback. As shown in F
15~a!, the closed feedback loop has allowed us to trace
subcritical open-loop bifurcation diagram up to amplitud
much higher than the thresholdsA1,2 of the two secondary
instabilities, which are indicated by horizontal lines. Figu
15~b! shows the amplitude dependence of the oscillation
quency. To see if these measurements are consistent wit
predictions of the quintic CGLE presented in Eqs.~3a! and
3~b!, we fit both data sets to a function of the formf (As)
5a1bAs

21cAs
4. The best-fit functions, shown as th

smooth curves in Figs. 15~a! and~b!, describe the data accu

FIG. 12. Comoving time averages of the modulated amplitu
wave-number, and stress-parameter profiles of a steadily modu
TW state produced by the second instability. In contrast to the s
of Fig. 8, the weak amplitude feedback shown in the bottom fra
~with x150.025! keeps the amplitude profile nearly uniform
space.
,
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rately and yield the following values of the cubic and quin
coefficients in the CGLE of Eq.~1!:

g513.260.5, t0
21c2g52754636, ~8a!

h5~27.161.1!3103, t0
21c4h5~2.161.1!3105.

~8b!

The coefficients of the cubic terms in the CGLE can be co
pared with the less-precise values presented in Refs.@17# and
@19#. In Ref. @17#, we measuredt0

2159.8160.19 in a cell of
radial widthG r51.677. With this, the measurements in E
~8a! yield a nonlinear frequency-renormalization coefficie
c2525.8260.37. This value is smaller than but still consi
tent with the value27.563.2 presented in Ref.@17#. In the
wider cell used in the present work,t0

21 may be closer to the
theoretical value of 9.16160.008 @17#, which would imply
c2526.2460.38. Both of these two new estimates forc2 lie
somewhat below the range 7–12 measured in Ref.@19#, but
those measurements were made using a different proce
and geometry and thus may not be directly comparable w

,
ted
te
e

FIG. 13. Measures of the uniformity of the TW state are plott
as functions of time during a run in which the amplitude referen
profile was modified at every time step according to Eq.~7!. ~a!
Fractional spatial standard deviation of the amplitude profile.~b!
Fractional spatial standard deviation of the wave-number profile~c!
Spatial standard deviation of the stress-parameter profile. Initia
x f was set to 0, andAs was set to 0.010. A brief decrease inAs

between times 14.6 and 17.3 h caused the spatially averaged a
tudeAm to drop to 0.0075; this is seen in the dip insk /km at time
t515.5 h. Then, at time 18.0 h,x f was increased to 0.006, causin
a clear decrease in the nonuniformity of the wave-number profi
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2530 PRE 61PAUL KOLODNER AND GEORG FLÄTGEN
our results. While the analyses presented in Refs.@17# and
@19# were able to yield values for the cubic coefficients in t
CGLE with reasonable precision, they were certainly una
to determine the quintic coefficients at all.The measuremen
of these coefficients has relied crucially on the ability
stabilize uniform TW using spatial feedback.

DISCUSSION

In this work, we have used global and spatial feedback
infinitesimal magnitude to stabilize uniform TW’s on the u
stable branch of the bifurcation diagram which describes
subcritical transition to convection. Our results demonstr
that spatially distributed feedback can be used to supp
erratic spatiotemporal behavior in an extended system. T
control has allowed us to trace out the unstable branch
thus to make accurate measurements of the cubic and qu
coefficients of the complex Ginzburg-Landau equat
which describes uniform, unidirectional TW’s in this syste
These measurements, combined with the linear coeffici
presented in Ref.@17# and the recent measurement of t
coefficient that governs the cubic nonlinear interaction
tween oppositely propagating TW’s@22#, constitute a com-
plete quantitative description of weakly nonlinear TW co
vection in this experimental system. In order to extend t
model so that it quantitatively describes dispersive cha
two further ingredients will be required. They are~i! a mea-
surement of the coefficients of nonlinear gradient terms
the CGLE@23# and ~ii ! a quantitative accounting of the in
teraction between TW’s and the ethanol concentration fi
which is known to have a profound effect on the behavior
high-amplitude convection@17,24#.

We have found that the closed-loop system exhibits t
interesting modulational instabilities. The first of these, ch
acterized by propagating amplitude and wave-number mo
lations under global feedback alone, has been observe

FIG. 14. Amplitude~top! and wave-number~bottom! profiles
for two periods during the run of Fig. 13, corrected using the r
erence profiles in Fig. 1 instead of those measured atAs5Aref .
Dashed curves: nonuniform initial profiles, averaged over the
riod t56.4 to 12.3 hours in Fig. 13. Full curves: final profile
averaged over the period 35.1–43.9 h in Fig. 13. Application of
correction in Eq.~7! has madek(x) more uniform and has brough
A(x) and Aref(x) into much better agreement with the amplitu
reference in Fig. 1.
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numerical simulations of the CGLE@25#. Amplitude feed-
back suppresses the amplitude modulations produced by
instability, and this then causes wave-number modulation
decay. The second, a phase instability suffered under am
tude feedback, has not been considered previously. Supp
sion of this second instability is accomplished by spa
feedback proportional to the gradient of the wave numbe

Our ability to maintain control of this system is affecte
by experimental imperfections such as noise and distorti
in the shadowgraph signals and delays in the application
feedback, as well as by intrinsic properties of the dynam
such as the size of the basin of attraction of the contro
state. Our understanding of these issues is imperfect
variable. For example, we have little knowledge of the nat
of the basin of attraction of the controlled state beyond
empirical understanding of how nonuniform a TW state c
become before control is lost. Our experience is that
delays in our feedback are short enough that they do
affect the stability of the closed-loop system. The issue
understand the best is the effect of distortions in the co
puted amplitude and wave-number profiles: a distorted T
state cannot be brought stably to high amplitudes, and
distortion must be corrected if control is to be maintaine
This aspect of our dynamical system has taught us what
uniform TW state actually is: it is the state whose amplitu

-

-

e

FIG. 15. ~a! The stress parameter«(As) in controlled, uniform
TW states is plotted against the set pointAs , with the axes inter-
changed so as to produce a bifurcation diagram. The subscripts has
been dropped to emphasize the point that this is an open-loop
furcation diagram that has been traced in closed loop. The data
been shifted slightly to give«(As→0)→0. The long- and short-
dashed lines show the instability thresholdsA1 and A2 , respec-
tively. The curve is a fit to the solution of the CGLE given in E
~3a!. ~b! The oscillation frequencyDv(As) is plotted againstAs .
Again, the data are shifted to giveDv(As→0)→0; the actual os-
cillation frequency at zero amplitude is 3.14. The curve is a fit
the form given in Eq.~3b!.
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and wave-number profiles match those shown in Fig. 1
opposed to that observed at the small TW amplitudeAref , in
which the amplitude profile is distorted by noise.

The results of these experiments have certain limitatio
We were not able to continue tracing the unstable branc
the bifurcation diagram up to the saddle node and onto
postulated stable upper branch. This was due not to lim
tions of the techniques employed but to a catastrophic fai
of the experimental apparatus. We did not make a ser
study of the loss of stability following cessation of spat
feedback, due to lack of time. And we did not attempt
perform full control of dispersive chaos—that is, to force t
system into a stable TW state, starting from an erratic st
This is discussed below.

The techniques developed in these experiments open
wide range of interesting experiments. Here, we sugg
three avenues of future research:

~i! Control of the Eckhaus instability. The Eckhaus ins
bility of fully nonlinear TW’s manifests itself in propagatin
wave-number modulations which are triggered when
Rayleigh number is brought below a wave-numb
dependent threshold@14#. This behavior is quite similar to
that produced by the second instability described in Figs
and 12 and should be susceptible to suppression by sp
feedback of the form described by Eq.~6!. Indeed, we rou-
tinely apply such feedback ‘‘by hand’’ to control this inst
bility, so as to put the system into theNr544 state of Fig. 1
and create a reproducible reference state. By suppressin
Eckhaus instability, a measurement of the true marginal
bility curve could be made.

~ii ! Control of unstable pulses. The drifting pulses d
scribed in Ref.@15# give way to dispersive chaos asc is
increased from20.07 to20.04 @16#. There is quite possibly
a range of intermediatec in which TW pulses are only
weakly unstable. These might be susceptible to control
spatial feedback, using as-yet-undetermined control a
rithms.

~iii ! Full control of dispersive chaos. Atc520.02, the
dynamics of steady-state dispersive chaos are influen
both by the interaction between bursts of oppositely pro
gating TW’s and by the interaction between TW’s and t
ethanol concentration field@24#. While the fast demodulation
r,

h,

,

s

s.
of
e

a-
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l

e.
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routine we have developed for the present experiments
unidirectional TW’s could easily be extended to separate
opposite TW components for individual control, it is hard
imagine how spatial feedback could be used to couple to
slow diffusion of ethanol and control its effect on the TW’
For this reason, we have avoided tackling this difficult pro
lem by only starting our experiments in a state of sma
amplitude, unidirectional TW’s. However, asc is made less
negative, the nonlinear dispersion responsible for disper
bursting becomes stronger@19#, and it is reasonable to expec
that the effects of the concentration field on the TW’s b
come weaker. Thus it appears likely that there is a regime
‘‘pure dispersive chaos’’ at smallucu in which concentration
effects are unimportant relative to nonlinear dispersion.
very simple spatial feedback scheme could be used to
press this pure dispersive chaos. Recall from the discus
of Eqs.~4a! and~4b! above that the wave-number deviatio
pumped by localized amplitude gradients reinforce those g
dients in turn by reducing the local linear growth rate, whi
is proportional to«2j0

2Dk2 @here, we have retained the pa
rameterj0

2, which was set to unity for convenience in th
derivation of Eqs.~4a! and~4b!#. This feedback loop can be
cut by applying the spatial feedback component

D«3~x,t !5x3j0
2Dk2~x,t !. ~9!

We have found in numerical simulations of the CGLE th
turning on spatial feedback of this form completely homo
enizes an initial state of dispersive chaos@25#, for a range of
gainsx3 near unity. In fact, it was our initial intention to us
this control algorithm to stabilize our experimental TW’
but, in practice, we have never allowed the wave-num
profile to become sufficiently nonuniform to trigger this in
stability mechanism. It appears likely that this form of spat
feedback would allow full control of pure dispersive chaos
small separation ratio.
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